Written by Sig Silber
The pattern of Pacific Troughs dropping down off the West Coast is forecast to change this week. It is a very big change. Questions remain as to how Zonal or Meridional the new pattern will be. The forecast has been trending to the more Meridional theme of deep troughs moving across CONUS as opposed to a consistently wet Northern Tier.
Please share this article – Go to very top of page, right hand side for social media buttons.
This is the current pattern which is forecast to change.
Because it is Winter we make it easy to get a snow forecast. This is the six-hour snow forecast.
Looking further out.
NOAA Snow Forecast looking ahead to Days 4,5 (top Row) 6 and 7 (bottom row). When you view these graphics you can click on them to enlarge them.
![]() | ![]() |
![]() | ![]() |
A. Now we return to our regular approach and focus on Alaska and CONUS (all U.S.. except Hawaii)
I am starting with a summary first for temperature and then for precipitation of small images of the three short-term maps. You can click on these maps to see larger versions. The easiest way to return to this report is by using the “Back Arrow” usually found top left corner of your screen to the left of the URL Box. Larger maps are available later in the article with the discussion and analysis.
For most people, the summary with the small images will be sufficient. Later in the article for those with sufficient interest there is a full description of the factors determining the maps shown here with a detailed analysis of the ENSO situation which so dramatically impacts the forecasts below. Because it is the Monday after a new Seasonal Outlook I have include the best graphic I have for the Day 1 -5 Period.
First Temperature
And then Precipitation
Let us focus on the Current (Right Now to 5 Days Out) Weather Situation.
Water Vapor.
This view of the past 24 hours provides a lot of insight as to what is happening.
You can see from this animation that there has been moisture entering Southern California.
Tonight, Monday evening March 19, 2018, as I am looking at the above graphic, you see not only the moisture continuing to enter Southern California but you can see lots of activity offshore of the West Coast.
This graphic is about Atmospheric Rivers i.e. thick concentrated movements of water moisture. More explanation on Atmospheric Rivers can be found by clicking here or if you want more theoretical information by clicking here. The idea is that we have now concluded that moisture often moves via narrow but deep channels in the atmosphere (especially when the source of the moisture is over water) rather than being very spread out. This raises the potential for extreme precipitation events. You can convert this graphic into a flexible forecasting tool by clicking here. One can obtain views of different geographical areas by clicking here.
And Now the Day One and Two CONUS Forecasts
Day One CONUS Forecast | Day Two CONUS Forecast |
There is some snow and snow/rain activity in the West. Severe thunderstorms in the Southeast and Gulf Coast including Florida. Earlier I have provided snow forecasts for day 4 through 7 and a link to earlier days. These graphics update and can be clicked on to enlarge but my brief comments are only applicable to what I see on Monday night prior to publishing. |
60 Hour Forecast Animation
Here is a national animation of weather fronts and precipitation forecasts with four 6-hour projections of the conditions that will apply covering the next 24 hours and a second day of two 12-hour projections the second of which is the forecast for 48 hours out and to the extent it applies for 12 hours, this animation is intended to provide coverage out to 60 hours. Beyond 60 hours, additional maps are available at links provided below. The explanation for the coding used in these maps, i.e. the full legend, can be found here although it includes some symbols that are no longer shown in the graphic because they are implemented by color coding.
You can enlarge the below daily (days 3 – 7) weather maps for CONUS by clicking on Day 3 or Day 4 or Day 5 or Day 6 or Day 7. These maps auto-update so whenever you click on them they will be forecast maps for the number of days in the future shown. You can see the next East Coast Nor’easter.
What is Behind the Forecasts? Let us try to understand what NOAA is looking at when they issue these forecasts.
Below is a graphic which highlights the forecasted surface Highs and the Lows re air pressure on Day 7. The Day 3 forecast can be found here. the Day 6 Forecast can be found here. Actually all the small graphics below can be clicked on to enlarge them.
When I look at this Day 7 forecast, there is a Low over the Western Aleutians with surface central pressure of 996 hPa. There is now a large High in the Siberian Arctic with surface central pressure of 1024 hPa and it really extends over to Greenland and down into the Canadian Northwest Territories. This explains the Negative AO. This week, the Hawaiian High with surface central pressure of 1028 may play a role in blocking storms from tracking down off California or via the Great Basin and forcing storms further north. There is a Low with surface central pressure of 1008 hPa which by Day 7 is off Newfoundland which probably will not much impact CONUS weather.
I provided this K – 12 write up that provides a simple explanation on the importance of semipermanent Highs and Lows and another link that discussed possible changes in the patterns of these highs and lows which could be related to a Climate Shift (cycle) in the Pacific or Global Warming. Remember this is a forecast for Day 6. It is not the current situation.
The table below showing the Day 3, Day 4, Day 5, Day 6 and Day 7 of this graphic can be useful in thinking about how the pattern of Highs and Lows is expect to move during the week.
Looking at the current activity of the Jet Stream. The below graphics and the above graphics are very related.
Not all weather is controlled by the Jet Stream (which is a high altitude phenomenon) but it does play a major role in steering storm systems especially in the winter The sub-Jet Stream level intensity winds shown by the vectors in this graphic are also very important in understanding the impacts north and south of the Jet Stream which is the higher-speed part of the wind circulation and is shown in gray on this map. In some cases however a Low-Pressure System becomes separated or “cut off” from the Jet Stream. In that case it’s movements may be more difficult to predict until that disturbance is again recaptured by the Jet Stream. This usually is more significant for the lower half of CONUS with the cutoff lows being further south than the Jet Stream. Some basic information on how to interpret the impact of jet streams on weather can be found here and here. I have not provided the ability to click to get larger images as I believe the smaller images shown are easy to read.
Current | Day 5 |
![]() | ![]() |
We still seem to have a split Polar Jet Stream with Northern and Southern Branches. It is fairly far south, another Pacific Trough. |
Putting the Jet Stream into Motion and Looking Forward a Few Days Also
To see how the pattern is projected to evolve, please click here. In addition to the shaded areas which show an interpretation of the Jet Stream, one can also see the wind vectors (arrows) at the 300 Mb level.
This longer animation shows how the jet stream is crossing the Pacific and when it reaches the U.S. West Coast is going every which way.
Click here to gain access to a very flexible computer graphic. You can adjust what is being displayed by clicking on “earth” adjusting the parameters and then clicking again on “earth” to remove the menu. Right now it is set up to show the 500 hPa wind patterns which is the main way of looking at synoptic weather patterns. This amazing graphic covers North and South America. It could be included in the Worldwide weather forecast section of this report but it is useful here re understanding the wind circulation patterns.
500 MB Mid-Atmosphere View
The map below is the mid-atmosphere 7-Day chart rather than the surface highs and lows and weather features. In some cases it provides a clearer less confusing picture as it shows only the major pressure gradients. This graphic auto-updates so when you look at it you will see NOAA’s latest thinking. The speed at which these troughs and ridges travel across the nation will determine the timing of weather impacts. This graphic auto-updates I think every six hours and it changes a lot. Because “Thickness Lines” are shown by those green lines on this graphic, it is a good place to define “Thickness” and its uses. The 540 Level generally signifies equal chances for snow at sea level locations. Thickness of 600 or more suggests very intensely heat and fire danger. Sometimes Meteorologists work with the 500 mb heights which provide somewhat similar readings to the “Thickness” lines but IMO provide slightly less specific information. Thinking about clockwise movements around High Pressure Systems and counter- clockwise movements around Low Pressure Systems provides a lot of information.
Here is the whole suite of similar maps for Days 3, 4, 5, 6 and repeated for Day 7.
Day 3 Above, 6 Below | Day 4 Above,7 Below | Day 5 Above. |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
Here is the seven-day cumulative precipitation forecast. More information is available here.
Four – Week Outlook: Looking Beyond Days 1 to 5, What is the Forecast for the Following Three + Weeks?
I use “EC” in my discussions although NOAA sometimes uses “EC” (Equal Chances) and sometimes uses “N” (Normal) to pretty much indicate the same thing although “N” may be more definitive.
First – Temperature
6 – 10 Day Temperature Outlook issued today (Note the NOAA Level of Confidence in the Forecast Released on March 19 was 4 out of 5
8 – 14 Day Temperature Outlook issued today (Note the NOAA Level of Confidence in the Forecast Released on March 19, 2018 was 4 out of 5).
Looking further out.
Now – Precipitation
6 – 10 Day Precipitation Outlook Issued Today (Note the NOAA Level of Confidence in the Forecast Released on March 19, 2018 was 4 out of 5)
8 – 14 Day Precipitation Outlook Issued Today (Note the NOAA Level of Confidence in the Forecast Released on March 19, 2018 was 4 out of 5)
Looking further out.
Here is the 6 – 14 Day NOAA discussion released today March 20, 2018 and the Week 3/4 (assumption rich) discussion released Friday March 16, 2018
6-10 DAY OUTLOOK FOR MAR 26 – 30 2018
TODAY’S ENSEMBLE MEAN SOLUTIONS ARE IN GOOD AGREEMENT ON THE EXPECTED 500-HPA FLOW PATTERN OVER THE FORECAST DOMAIN. TROUGHS ARE FORECAST OVER THE ALEUTIANS, AND THE WESTERN CONUS, WHILE RIDGING IS PREDICTED OVER MAINLAND ALASKA AND THE EASTERN CONUS. TODAY’S MANUAL 500-HPA HEIGHT BLEND IS BASED PRIMARILY ON THE ENSEMBLE MEANS FROM THE CANADIAN, EUROPEAN, AND GEFS MODEL SUITES. THE RESULTANT MANUAL BLEND DEPICTS NEGATIVE HEIGHT ANOMALIES OVER PARTS OF THE SOUTHWESTERN CONUS. NEAR TO ABOVE NORMAL 500-HPA HEIGHTS ARE FORECAST OVER THE REMAINDER OF THE FORECAST DOMAIN.
TROUGHING ENHANCE PROBABILITIES OF NEAR TO BELOW NORMAL TEMPERATURES FOR THE WESTERN CONUS, AND PARTS OF THE NORTHERN AND CENTRAL PLAINS. PREDICTED NORTHERLY FLOW FAVORS BELOW NORMAL TEMPERATURES OVER NEW ENGLAND. NEAR TO ABOVE NORMAL HEIGHTS AND RIDGING FAVOR NEAR TO ABOVE NORMAL TEMPERATURES FOR THE SOUTHEASTERN AND SOUTH-CENTRAL CONUS, OHIO VALLEY, GREAT LAKES REGION, AND SOUTHWESTERN MAINLAND ALASKA, AS WELL AS THE ALEUTIANS AND THE ALASKA PANHANDLE.
THE TROUGH FORECAST OVER THE WESTERN CONUS ENHANCES PROBABILITIES OF NEAR TO ABOVE NORMAL PRECIPITATION OVER PARTS OF THE SOUTHERN ROCKIES AND MOST OF THE CENTRAL AND EASTERN CONUS, EXCEPT FOR FLORIDA AND NEW ENGLAND WHERE BELOW NORMAL PRECIPITATION IS FAVORED. NEAR TO BELOW NORMAL PRECIPITATION IS FAVORED FOR THE WESTERN CONUS, CONSISTENT WITH DYNAMICAL MODEL GUIDANCE FROM THE ECMWF AND GEFS ENSEMBLE MEAN SOLUTIONS. THE TROUGH OVER THE ALEUTIANS FAVORS NEAR TO ABOVE NORMAL PRECIPITATION FOR ALASKA.
FORECAST CONFIDENCE FOR THE 6-10 DAY PERIOD: ABOVE AVERAGE, 4 OUT OF 5, DUE TO GOOD MODEL AND TOOL AGREEMENT.
8-14 DAY OUTLOOK FOR MAR 28 – APR 03, 2018
DURING THE WEEK-2 PERIOD, THE LARGE-SCALE PATTERN OVER ALASKA AND THE WESTERN CONUS IS EXPECTED TO BE SIMILAR TO THAT FORECAST IN THE 6-10 DAY PERIOD. A TROUGH IS FORECAST OVER THE ALEUTIANS, A RIDGE OVER MAINLAND ALASKA, AND A TROUGH OVER THE WESTERN CONUS. THE RIDGE FORECAST OVER THE EASTERN CONUS DURING THE 6-10 DAY PERIOD IS EXPECTED WEAKEN DURING WEEK-2. TODAY’S MANUAL 500-HPA HEIGHT BLEND DEPICTS NEGATIVE HEIGHT ANOMALIES OVER PARTS OF THE SOUTHWESTERN AND NORTHEASTERN CONUS, WITH POSITIVE HEIGHT ANOMALIES ELSEWHERE.
TROUGHING OVER THE WESTERN CONUS ENHANCES PROBABILITIES OF NEAR TO BELOW NORMAL TEMPERATURES FOR MOST OF THE CENTRAL CONUS. NEAR TO ABOVE NORMAL HEIGHTS FAVORS NEAR TO ABOVE NORMAL TEMPERATURES FOR PARTS OF THE WESTERN AND SOUTHEASTERN CONUS, AS WELL AS SOUTHERN AND WESTERN ALASKA.
THE TROUGH FORECAST OVER THE WESTERN CONUS ENHANCES PROBABILITIES OF NEAR TO ABOVE NORMAL PRECIPITATION OVER THE SOUTH-CENTRAL AND MOST OF THE EASTERN CONUS, EXCEPT FOR SOUTHERN FLORIDA AND GREAT LAKES REGION WHERE BELOW NORMAL PRECIPITATION IS INDICATED. NEAR TO BELOW NORMAL PRECIPITATION IS FAVORED FOR WESTERN CONUS, CONSISTENT WITH DYNAMICAL MODEL GUIDANCE FROM THE GEFS AND ECMWF ENSEMBLE MEAN SOLUTIONS. THE TROUGH OVER THE ALEUTIANS FAVORS ABOVE NORMAL PRECIPITATION FOR SOUTHWESTERN ALASKA.
FORECAST CONFIDENCE FOR THE 8-14 DAY PERIOD: ABOVE AVERAGE, 4 OUT OF 5, DUE TO GOOD MODEL AND TOOL AGREEMENT.
Week 3-4 Forecast Discussion Valid Sat Mar 31 2018-Fri Apr 13 2018
La Nina conditions currently are present across the equatorial Pacific Ocean. Equatorial sea surface temperatures (SSTs) are below average across the central and eastern Pacific Ocean. Both the La Nina and the coupled atmospheric response to this cold event weakened considerably in recent weeks. The CPC velocity potential based and RMM MJO indices indicate the MJO signal has weakened considerably during the past few weeks, with the enhanced convective phase currently located over the eastern Indian Ocean. The MJO is predicted to continue to weaken over the next two weeks. The Week 3/4 temperature and precipitation outlooks rely primarily on dynamical model forecasts from the NCEP CFS, ECMWF and JMA operational ensemble prediction systems, as well as forecasts from the Subseasonal Experiment (SubX), a multi-model ensemble (MME) of experimental ensemble prediction systems. Consideration is also given to the possible evolution of the predicted circulation pattern for Week-2.
The various model guidance supporting the Week 3-4 outlook is in good agreement today, depicting a trough over the great lakes region, while anomalous ridging is indicated over western Alaska and the Aleutians. The CFS, ECMWF and JMA ensemble means depict near- to above-normal 500-hPa heights over most of the southern and eastern CONUS as well as Alaska, while near- to below-normal 500-hPa heights are indicated over most parts of the north-central CONUS. The CFS and ECMWF favor near-normal 500-hPa heights over Hawaii, while the JMA predicts above-normal 500-hPa heights over Hawaii.
Calibrated temperature forecasts from the individual models and multi-model combinations of these forecasts favor an enhanced likelihood of near- to above-normal temperatures across most of southern CONUS, and near- to below normal temperatures over much of the northern CONUS. This is also supported by the Multiple Linear Regression tool that uses ENSO, MJO, and long-term trend time series. Near- to Above-normal temperatures are forecast over western Alaska, while below-normal temperatures are indicated over eastern Alaska, consistent with dynamical model guidance from SubX.
The various guidance is also in good agreement on the precipitation outlook. Near and downstream of a predicted trough, near- to above-median precipitation is favored over much of the eastern CONUS. The various dynamical guidance as well as statistical guidance is in good agreement on below-median precipitation over the southwestern CONUS and southern Alaska, and above-median precipitation over Washington.
Dynamical model guidance from CFS and ECMWF temperature forecasts indicate increased probabilities of above-normal temperatures for Hawaii during the Week 3-4 period. The CFS/ECMWF/JMA correlation weighted consolidation forecast favors above-median precipitation over Kahului and Honolulu.
Some Indices of Possible Interest:
Phases of the PNA pattern (N.C. State) PNA Negative is on the right. The Pacific Hawaiian High is out to sea allowing the Pacific Troughs that we have been having and also Gulf Coast moisture entering CONUS. But the PNA may not be controlling this change in pattern.
NCEP-NEFS | CFSv2 |
![]() |
Analogs to the Outlook.
Now let us take a detailed look at the “Analogs” which NOAA provides related to the 5 day period centered on 3 days ago and the 7 day period centered on 4 days ago. “Analog” means that the weather pattern then resembles the recent weather pattern and was used in some way to predict the 6 – 14 day Outlook.
Here are today’s analogs in chronological order although this information is also available with the analog dates listed by the level of correlation. I find the chronological order easier for me to work with. There is a second set of analogs associated with the Outlook but I have not been regularly analyzing this second set of information. The first set which is what I am using today applies to the 5 and 7 day observed pattern prior to today. The second set, which I am not using, relates to the correlation of the forecasted outlook 6 – 10 days out with similar patterns that have occurred in the past during the dates covered by the 6 – 10 Day Outlook. The second set of analogs may also be useful information but they put the first set of analogs in the discussion with the second set available by a link so I am assuming that the first set of analogs is the most meaningful and I find it so.
Centered Day | ENSO Phase | PDO | AMO | Other Comments |
Mar 14, 1952 | Neutral | – | + | After an El Nino |
Mar 15, 1954 | El Nino | – | + | Tail End |
Mar 16, 1954 | El Nino | – | + | Tail End |
Mar 30, 1965 | El Nino | N | – | At the start |
Mar 24, 1972 | Neutral | – | – | Just before an El Nino |
Mar 25, 1972 | Neutral | – | – | |
Mar 23, 2002 | Neutral | – | + | |
Mar 1, 2006 | La Nina | + | + | Tail End |
Mar 17, 2006 (2) | La Nina | + | + | Tail End |
(t) = a month where the Ocean Cycle Index has just changed or does change the following month.
The spread among the analogs from March 1 to March 30 is 29 days which is about the same as last week. I have not calculated the centroid of this distribution which would be the better way to look at things but the midpoint, which is a lot easier to calculate, and fairly accurate if the dates are reasonably evenly distributed, is about March 15. These analogs are centered on 3 days and 4 days ago (March 15 or March 16). So the analogs could be considered to be in sync with respect to weather that we would normally be getting right now. For more information on Analogs see discussion in the GEI Weather Page Glossary. For sure it is a rough measure as there are so many historical patterns but not enough to be a perfect match with current conditions. I use it mainly to see how our current conditions match against somewhat similar patterns and the ocean phases that prevailed during those prior patterns. If everything lines up I have my own measure of confidence in the NOAA forecast. Similar initial conditions should lead to similar weather. I am a mathematician so that is how I think about models.
Including the duplicates, there are four Neutral Analogs, three La Nina analogs and three El Nino Analogs. The phases of the analogs this week correlate slightly better with McCabe C and McCabe D which are opposites but both have some sort of western drought. They are both associated with AMO+. I am not as confident as NWS CLIMATE PREDICTION CENTER that the COLLEGE PARK, MD that the Gulf Coast storm will reach as far west as they suggest.
The seminal work on the impact of the PDO and AMO on U.S. climate can be found here. Water Planners might usefully pay attention to the low-frequency cycles such as the AMO and the PDO as the media tends to focus on the current and short-term forecasts to the exclusion of what we can reasonably anticipate over multi-decadal periods of time. One of the major reasons that I write this weather and climate column is to encourage a more long-term and World view of weather.
In color | Black and White same graphics |
![]() | ![]() |
McCabe Condition | Main Characteristics |
A | Very Little Drought. Southern Tier and Northern Tier from Dakotas East Wet. Some drought on East Coast. |
B | More wet than dry but Great Plains and Northeast are dry. |
C | Northern Tier and Mid-Atlantic Drought |
D | Southwest Drought extending to the North and also the Great Lakes. This is the most drought-prone combination of Ocean Phases. |
You may have to squint but the drought probabilities are shown on the map and also indicated by the color coding with shades of red indicating higher than 25% of the years are drought years (25% or less of average precipitation for that area) and shades of blue indicating less than 25% of the years are drought years. Thus drought is defined as the condition that occurs 25% of the time and this ties in nicely with each of the four pairs of two phases of the AMO and PDO.
Historical Anomaly Analysis
When I see the same dates showing up often I find it interesting to consult this list.
A Useful Read
Some might find this analysis which you need to click to read interesting as the organization which prepares it focuses on the Pacific Ocean and looks at things from a very detailed perspective and their analysis provides a lot of information on the history and evolution of ENSO events.
Recent CONUS Weather
This is provided mainly to see the pattern in the weather that has occurred recently.
The U.S. Drought Monitor is a comprehensive way of understand the drought situation for the U.S. If is issued every Thursday and reflects the conditions as of the prior Tuesday. The drought monitor is not just based on precipitation but the condition of the land so it generally reflects more than a month’s precipitation and temperature and wind.
Because of the current drought conditions we now publish a Drought Update on Thursdays. You can access the most recent report here.
This is the summary from last Thursday Report.
Reference Forecasts Full Month and Three Months.
Below are the Temperature followed by the Precipitation Outlooks for the month and three months shown in the Legend. These maps are issued on the Third Thursday of the Month. The maps for the following month (but not the three-month maps) are updated on the last day of the month. The 6 – 10 day and 8 – 14 Day update daily and the Week 3/4 Map Updates every Friday so usually these are more up to date. Also the three shorter-term maps will generally cover a slightly different time period since they update daily as the month progresses. But these reference maps are sometimes useful if one wants to understand how the current month was originally forecast to play out.
B. Beyond Alaska and CONUS Let’s Look at the World which of course also includes Alaska and CONUS
It is Useful to Understand the Semipermanent Pattern that Control our Weather and Consider how These Change from Winter to Summer. These two graphics (click on each one to enlarge) are from a much larger set available from the Weather Channel. They highlight the position of the Bermuda High which they are calling the Azores High in the January graphic and is often called NASH and it has a very big impact on CONUS Southeast weather and also the Southwest. You also see the north/south migration of the Pacific High which also has many names and which is extremely important for CONUS weather and it also shows the change of location of the ITCZ which I think is key to understanding the Indian Monsoon. A lot of things become much clearer when you understand these semi-permanent features some of which have cycles within the year, longer period cycles and may be impacted by Global Warming. We are now into Late-March and should be returning to the set of positions shown below for July (and that appears to be happening at least in the Pacific).For CONUS, the seasonal repositioning of the Bermuda High and the Pacific High are very significant. Notice the Winter position of the Pacific High (Hawaiian High). It has been further north than usual for this time of the year. But it is forecast to drop down closer to its usual position
![]() | ![]() |
Forecast for Today (you can click on the maps to enlarge them)
Temperature. | Precipitation. |
![]() | ![]() |
Not a lot of surprises here. | We again see the dry belt stretching from Northern Africa to Eastern Asia now including part of Southeast Asia. |
Additional Maps showing different weather variables can be found here.
Forecast for Day 6 (Currently Set for Day 6 but the reader can change that)
World Weather Forecast produced by the Australian Bureau of Meteorology. Unfortunately I do not know how to extract the control panel and embed it into my report so that you could use the tool within my report. But if you visit it Click Here and you will be able to use the tool to view temperature or many other things for THE WORLD. It can forecast out for a week. Pretty cool. Return to this report by using the “Back Arrow” usually found top left corner of your screen to the left of the URL Box. It may require hitting it a few times depending on how deep you are into the BOM tool. Below are the current worldwide precipitation and temperature forecasts for six days out. They will auto-update and be current for Day 6 whenever you view them. If you want the forecast for a different day Click Here
Temperature | Precipitation |
Please remember this graphic updates every six hours so the diurnal pattern can confuse the reader. | The precipitation over Northern South American is impressive. |
And now we have experimental forecasts from the U.S. NAEFS Model. They are difficult to read without first enlarging them.
Temperature | Precipitation |
You can really see that Northern Africa is quite warm. | You have click on this to read it. There are a lot of extremes dry and wet shown. |
Looking Out a Few Months
Here is the precipitation forecast from Queensland Australia:
It is kind of amazing that you can make a worldwide forecast based on just one parameter the SOI and changes in the SOI. Western CONUS looks fairly wet, Australia is dry.
JAMSTEC Forecasts
One can always find the latest JAMSTEC maps by clicking this link. You will find additional maps that I do not general cover in my monthly Update Report. Remember if you leave this page to visit links provided in this article, you can return by hitting your “Back Arrow”, usually top left corner of your screen just to the left of the URL box.
Sea Surface Temperature (SST) Departures from Normal for this Time of the Year i.e. Anomalies
My focus here is sea surface temperature anomalies as they are one of the two largest factors determining weather around the World. If we want to have a good feel for future weather we need to look at the oceans as our weather mostly comes from oceans and we need to look at
- Surface temperature anomalies (weather develops from the ocean surface and
- The changes in the temperature anomalies since that may provide clues as to how the surface anomalies will change based on the current trend of changes. This is not that easy to do since the oceans are deep, there are many currents, winds have an impact etc. Two ways that are available to use are to look at the change in the situation today compared to the average over a period of time and NOAA also produces a graphic of monthly changes. I use both. The first set of graphics is simply looking at the average compared to today and that is below.
Three Month Average Anomaly | Current Anomaly |
![]() | ![]() |
La Nina shows up | The cool anomaly is displaced to the west a bit. We see a lot of white where we used to see blue. |
And when we look in more detail at the current Sea Surface anomalies below, we see a lot of them not just along the Equator related to ENSO.
Then we look at the change in the anomalies. The SST anomaly is sort of like the first derivative and the change in the anomaly is somewhat like a second derivative. It tells us if the anomaly is becoming more or less intense.
This may be a good time to show the recent values to the indices most commonly used to describe the overall spacial pattern of temperatures in the (Northern Hemisphere) Pacific and the (Northern Hemisphere) Atlantic and the Dipole Pattern in the Indian Ocean. Notice the change in the PDO in July of 2017 and the stability of the AMO index.
Most Recent Six Months of Index Values | PDO Click for full list | AMO click for full list. | Indian Ocean Dipole (Values read off graph) | |
October | -0.67 | +0.39 | -0.3 | |
November | +0.84 | +0.40 | 0.0 | |
December | +0.56 | +0.34 | -0.1 | |
January | +0.12 | +0.23 | 0.0 | |
February | +0.05 | +0.23 | +0.2 | |
March | +0.14 | +0.17 | +0.0 | |
April | +0.53 | +0.29 | +0.2 | |
May | +0.29 | +0.32 | +0.2 | |
June | +0.21 | +0.31 | 0.0 | |
July | -0.50 | +0.31 | 0.0 | |
August | -0.62 | +0.31 | +0.4 | |
September | -0.25 | +0.35 | +0.2 | |
October | -0.61 | +0.44 | 0.0 | |
November | -0.45 | +0.35 | 0.0 | |
December 2017 | -0.13 | +0.36 | -0.4 | |
January 2018 | +0.29 | +0.17 | -0.1 | |
February | -0.10 | +0.06 | 0.0 |
Switching gears, below is an analysis of projected tropical hazards and benefits over an approximately two-week period.
* Moderate Confidence that the indicated anomaly will be in the upper or lower third of the historical range as indicated in the Legend. ** High Confidence that the indicated anomaly will be in the upper or lower third of the historical range as indicated in the Legend.
C. Progress of ENSO
A major driver of weather is Surface Ocean Temperatures. Evaporation only occurs from the Surface of Water. So we are very interested in the temperatures of water especially when these temperatures deviate from seasonal norms thus creating an anomaly. The geographical distribution of the anomalies is very important. To a substantial extent, the temperature anomalies along the Equator have disproportionate impact on weather so we study them intensely and that is what the ENSO (El Nino – Southern Oscillation) cycle is all about. Subsurface water can be thought of as the future surface temperatures. They may have only indirect impacts on current weather but they have major impacts on future weather by changing the temperature of the water surface. Winds and Convection (evaporation forming clouds) is weather and is a result of the Phases of ENSO and also a feedback loop that perpetuates the current Phase of ENSO or changes it. That is why we monitor winds and convection along or near the Equator especially the Equator in the Eastern Pacific.
Starting with Surface Conditions.
TAO/TRITON GRAPHIC (a good way of viewing data related to the part of the Equator and the waters close to the Equator in the Eastern Pacific where we monitor to determining the current phase of ENSO. It is probably not necessary in order to follow the discussion below, but here is a link to TAO/TRITON terminology.
And here is the current version of the TAO/TRITON Graphic. The top part shows the actual temperatures, the bottom part shows the anomalies i.e. the deviation from normal.
Location Bar for Nino 3.4 Area Above and Below
———————————————— | A | B | C | D | E | —————– |
My Calculation of the Nino 3.4 Index
I calculate the current value of the Nino 3.4 Index each Monday using a method that I have devised. To refine my calculation, I have divided the 170W to 120W Nino 3.4 measuring area into five subregions (which I have designated from west to east as A through E) with a location bar shown under the TAO/TRITON Graphic). I use a rough estimation approach to integrate what I see below and record that in the table I have constructed. Then I take the average of the anomalies I estimated for each of the five subregions.
So as of Monday March 19 in the afternoon working from the March 18 TAO/TRITON report [Although the TAO/TRITON Graphic appears to update once a day, in reality it updates more frequently.], this is what I calculated.
Calculation of Nino 3.4 from TAO/TRITON Graphic
Anomaly Segment | Estimated Anomaly | |
Last Week | This Week | |
A. 170W to 160W | -0.2 | -0.2 |
B. 160W to 150W | -0.7 | -0.5 |
C. 150W to 140W | -0.8 | -0.8 |
D. 140W to 130W | -0.9 | -0.9 |
E. 130W to 120W | -0.7 | -1.0 |
Total | -3.3 | -3.4 |
Total divided by five i.e. the Daily Nino 3.4 Index | (-3.3)/5 = -0.7 | (-3.4)/5 = -0.7 |
My estimate of the daily Nino 3.4 SST anomaly tonight is -0.7 which is a La Nina value. NOAA has reported the weekly Nino 3.4 to have not changed and remains at -0.7 which is still a La Nina value and the same as my estimate. Nino 4 is reported to be -0.1. Nino 3 is less cool at -0.7. Nino 1 + 2 which extends from the Equator south rather than being centered on the Equator is reported cooler at -0.7. It was up there close to -3.0 at one time so this index has been declining as an anomaly (rising) quite a bit and also fluctuating quite a bit which is not surprising as it is the area most impacted by the Upwelling off the coast. So it is an indication of the interaction between surface water and rising cool water. Thus it is subject to larger changes. I am only showing the currently issued version of the NINO SST Index Table as the prior values are shown in the small graphics on the right with this graphic. The same data in graphic form but going back a couple of more years can be found here. The full table of values can be found here.
This graphic brings the Nino 3.4 up to date and is easy to read.
Here is another way of looking at the TAO/TRITON Graphic. It is a fast way to assess the strength of an ENSO Event and provides a way to track it.
The below table only looks at the Equator and shows the extent of anomalies along the Equator. The ONI Measurement Area is the 50 degrees of Longitude between 170W and 120W and extends 5 degrees of Latitude North and South of the Equator so the above table is just a guide and a way of tracking the changes. The top rows show El Nino anomalies. The two rows just below that break point contribute to ENSO Neutral.
Subareas of the Anomaly | Westward Extension | Eastward Extension | Degrees of Coverage | Total by ENSO Phase | |
Total | Portion in Nino 3.4 Measurement Area | ||||
These Rows below show the Extent of El Nino Impact on the Equator | |||||
1C to 1.5C (strong) | NA | NA | 0 | 0 | 0 |
+0.5C to +1C (marginal) | NA | NA | 0 | 0 | |
These Rows Below Show the Extent of ENSO Neutral Impacts on the Equator | |||||
0.5C or cooler Anomaly (warmish neutral) | 170E | 177W | 13 | 0 | 12 |
0C or cooler Anomaly (coolish neutral) | 177W | 158W | 19 | 12 | |
These Rows Below Show the Extent of La Nina Impacts on the Equator. | |||||
-0.5C or cooler Anomaly | 158W | 148W | 10 | 10 | 38 |
-1.0C or cooler Anomaly | 148W | LAND | 53 | 28 | |
-1.5C or cooler Anomaly | LAND | LAND | 0 | 0 | |
-2.0C or cooler Anomaly | LAND | LAND | 0 | 0 | |
-2.5C or cooler Anomaly | LAND | LAND | 0 | 0 | |
This week 38 degrees of longitude along the Equator in the Nino 3.4 Measurement Area registers La Nina values. The other 12 degrees register Neutral. That is not the case for the full +5N and +5S width of the Nino 3.4 Measurement Area but in this analysis we are just looking at the Equator. It is again remarkably similar to one week ago. The cool anomaly has moved a bit but is the same size but in two pieces. The -1.5C anomaly is not shown. Roughly speaking, the ratio of the Neutral Value to 50 tells us if we are close to being in Neutral. |
The next graphic overlaps with the subsequent topic but I will show it here.
The discussion in this slide says it better than I could. One might compare the current reading to Oct/Nov 2017. The anomaly had returned to zero then reversed for a month and then returned to zero and now has gone positive. In retrospect it was the Kelvin Wave Activity the Upwelling Phase and the MJO which caused the brief reversal of the warming trend.
A side by side comparison can be useful
Comparison Week Probably Third Week of December 2017 | Current Week |
![]() |
Sea Surface Temperature and Anomalies
It is the ocean surface that interacts with the atmosphere and causes convection and also the warming and cooling of the atmosphere. So we are interested in the actual ocean surface temperatures and the departure from seasonal normal temperatures which is called “departures” or “anomalies”. Since warm water facilitates evaporation which results in cloud convection, the pattern of SST anomalies suggests how the weather pattern east of the anomalies will be different than normal.
A major advantage of the Hovmoeller method of displaying information is that it shows the history so I do not need to show a sequence of snapshots of the conditions at different points in time. This Hovmoeller provides a good way to visually see the evolution of this ENSO event. I have decided to use the prettied-up version that comes out on Mondays rather that the version that auto-updates daily because the SST Departures on the Equator do not change rapidly and the prettied-up version is so much easier to read. The bottom of the Hovmoeller shows the current readings. Remember the +5, -5 degree strip around the Equator that is being reported in this graphic. So it is the surface but not just the Equator.
This next graphic is more focused on the Equator and looks down to 300 meters rather than just being the surface.
We are back to a single Kelvin Wave phase in operation. The up-welling phase reached South America and is no longer a factor. The down-welling phase is at the Dateline. The down-welling phase will provide the warm water to end this La Nina after a short lag.
Let us look in more detail at the Equatorial Water Temperatures.
We are now going to look at a three-dimensional view of the Equator and move from the surface view and an average of the subsurface heat content to a more detailed view from the surface down This graphic provides both a summary perspective and a history (small images on the right).
.
Anomalies are strange. You can not really tell for sure if the blue area is colder or warmer than the water above or below. All you know is that it is cooler than usual for this time of the year. A later graphic will provide more information. Aside from buoyancy the currents tend to bring water from that depth up to the surface mostly farther east.
Now for a more detailed look. Below is the pair of graphics that I regularly provide. The date shown is the midpoint of a five-day period with that date as the center of the five-day period. The bottom graphic shows the absolute values, the upper graphic shows anomalies compared to what one might expect at this time of the year in the various areas both 130E to 90W Longitude and from the surface down to 450 meters. At different times I have discussed the difference between the actual values and the deviation of the actual values from what is defined as current climatology (which adjusts every ten years except along the Equator where it is adjusted every five years) and how both measures are useful for other purposes.
There is cold water from 170W to 120W and spotty to the east. At the west end of the -1C cool anomaly it is now about 75 meters deep (it was once over 200 meters deep). We now have warm water with a maximum anomaly of +6C (probably an error in the graphc whch may have been corrected but at any rate -3C is probably more realistic) developing west of the Dateline and crossing the Dateline at depth to 120W, the result of another Down-welling Kelvin Wave. La Nina’s days are numbered and it does not have much longer to go. But the cool intrusion into the warm anomaly at 170E suggests it will be a transition to ENSO Neutral not El Nino. |
![]() |
The 28C Isotherm is at 170 East, the 27C Isotherm is at 170W, the 25C Isotherm is now east of 140W and in many places at the surface further east. The 20C Isotherm no longer is reaching the surface but almost does due to the Up-welling Kelvin Wave. You can really see that cool intrusion at 170E. |
The flattening of the Isotherm Pattern is an indication of ENSO Neutral just as the steepening of the pattern indicates La Nina or El Nino depending on where the slope shows the warm or cool pool to be. That flattening has occurred and we have gone to a Weak La Nina thermocline.
Tracking the change.
And now let us look at the atmosphere.
And Now the Air Pressure to Confirm that the Atmosphere is Reacting to the Sea Surface Temperature Pattern. The most Common way to do that is to use an Index called the SOI.
This index provides an easy way to assess the location of and the relative strength of the Convection (Low Pressure) and the Subsidence (High Pressure) near the Equator. Experience shows that the extent to which the Atmospheric Air Pressure at Tahiti exceeds the Atmospheric Pressure at Darwin Australia when normalized is substantially correlated with the Precipitation Pattern of the entire World. At this point there seems to be no need to show the daily preliminary values of the SOI but we can work with the 30 day and 90 day values.
Current SOI Readings
The 30 Day Average on March 19, 2018 was reported as 7.35 which is a La Nina value. The 90 Day Average was reported at +1.57 which is an ENSO Neutral value. Looking at both the 30 and 90 day averages is useful with the 90 day lagging the 30 day as one would expect. But they are not in agreement at this point in time.The trend has been down (i.e. less La Nina-ish) but different this week. So Queensland in their forecast is basing it on a declining SOI and that forecast is shown elsewhere in this report. But the thirty-day average is up not down. So their forecast is questionable at this point. |
SOI = 10 X [ Pdiff – Pdiffav ]/ SD(Pdiff) where Pdiff = (average Tahiti MSLP for the month) – (average Darwin MSLP for the month), Pdiffav = long term average of Pdiff for the month in question, and SD(Pdiff) = long term standard deviation of Pdiff for the month in question. So really it is comparing the extent to which Tahiti is more cloudy than Darwin, Australia. During El Nino we expect Darwin Australia to have lower air pressure and more convection than Tahiti (Negative SOI especially lower than -7 correlates with El Nino Conditions). During La Nina we expect the Warm Pool to be further east resulting in Positive SOI values greater than +7).
To some extent it is the change in the SOI that is of most importance. The MJO or Madden Julian Oscillation is an important factor in regulating the SOI and Ocean Equatorial Kelvin Waves and other tropical weather characteristics. More information on the MJO can be found here. Here is another good resource.
Forecasting the Evolution of ENSO
Here is the primary NOAA model for forecasting the ENSO Cycle. | The CDAS model is a legacy “frozen” NOAA system meaning the software is maintained but not updated. We find it convenient to obtain this graphic from Tropical Tidbits.com |
This model is still forecasting a La Nina. It probably is the most aggressive model re being so definitive about the ENSO Phase for this Fall and Winter. Click here to see a month by month version of the same model but without some of the correction methodologies applied. It gives us a better picture of the further out months as we are looking at monthly estimates versus three-month averages. | Notice that since February, 2018 the Nino 3.4 Index has been rising. The CDAS data It is not in conflict with the primary NOAA model but shows daily values rather then smoothing them out like the CFSv2 Model does. The CDAS data has not risen above -0.5C that seems to be a lid. |
The CFS.v2 is not the only forecast tool used by NOAA. The CPC/IRI Analysis which is produced out of The International Research Institute (IRI) for Climate and Society at Columbia University is also very important to NOAA.
Here is the most recent update. It is quite dramatic. We should have a new update very soon.
IRI ENSO Forecast
IRI Technical ENSO Update Published: March 19, 2018
Note: The SST anomalies cited below refer to the OISSTv2 SST data set, and not ERSSTv4. OISSTv2 is often used for real-time analysis and model initialization, while ERSSTv4 is used for retrospective official ENSO diagnosis because it is more homogeneous over time, allowing for more accurate comparisons among ENSO events that are years apart. During ENSO events, OISSTv2 often shows stronger anomalies than ERSSTv4, and during very strong events the two datasets may differ by as much as 0.5 C. Additionally, the ERSSTv4 may tend to be cooler than OISSTv2, because ERSSTv4 is expressed relative to a base period that is updated every 5 years, while the base period of OISSTv2 is updated every 10 years and so, half of the time, is based on a slightly older period and does not account as much for the slow warming trend in the tropical Pacific SST.
Recent and Current Conditions
In mid-March 2018, the NINO3.4 SST anomaly was in the weak La Niña range. For February the SST anomaly was -0.90 C, indicating weak La Niña, and for December-February it was -0.81 C, also in that range. The IRI’s definition of El Niño, like NOAA/Climate Prediction Center’s, requires that the SST anomaly in the Nino3.4 region (5S-5N; 170W-120W) exceed 0.5 C. Similarly, for La Niña, the anomaly must be -0.5 C or less. The climatological probabilities for La Niña, neutral, and El Niño conditions vary seasonally, and are shown in a table at the bottom of this page for each 3-month season. The most recent weekly anomaly in the Nino3.4 region was -0.7, showing persistent weak La Niña SST conditions. However, the pertinent atmospheric variables, including the lower level zonal wind anomalies, the Southern Oscillation Index and the anomalies of outgoing longwave radiation (convection), have stopped showing patterns suggestive of La Niña since a strong MJO event occurred during February. Subsurface temperature anomalies across the eastern equatorial Pacific are now near-average or even slightly warmer than average, suggesting that La Niña is nearing the end of its duration. Given the current and recent SST anomalies, the subsurface profile and the conditions of most key atmospheric variables, it appears we are in the final stage of this weak-to-moderate La Niña of 2017-18.
Expected Conditions
What is the outlook for the ENSO status going forward? The most recent official diagnosis and outlook was issued approximately one week ago in the NOAA/Climate Prediction Center ENSO Diagnostic Discussion, produced jointly by CPC and IRI; it stated that the La Niña is likely to transition to ENSO-neutral during the March-May season. A La Niña Advisory was once again issued with that Discussion. The latest set of model ENSO predictions, from mid-March, now available in the IRI/CPC ENSO prediction plume, is discussed below. Those predictions also suggest that the SST is likely to return to neutral during within the March-May season.
As of mid-March, about 50% of the dynamical or statistical models predict La Niña conditions for the initial Mar-May 2018 season, dropping to only around 20% for Apr-Jun and below 10% from May-Jul through the final season of Nov-Jan. At lead times of 3 or more months into the future, statistical and dynamical models that incorporate information about the ocean’s observed subsurface thermal structure generally exhibit higher predictive skill than those that do not. For the Jun-Aug 2018 season, among models that do use subsurface temperature information, 80% of models predicts neutral conditions and about 15% predict El Niño conditions, leaving just 5% for La Niña conditions. For all models, starting with the second lead time of Apr-Jun 2018 and lasting through all of the forecast range, predictions for ENSO-neutral conditions have more than a 50% probability, with probabilities peaking at more than 80% for May-Jul and Jun-Aug. Near the end of the forecast range, Oct-Dec and Nov-Jan, the probability for El Niño rises to over 40% and La Niña probabilities drop to about 5% or less.
Note – Only models that produce a new ENSO prediction every month are included in the above statement.
Caution is advised in interpreting the distribution of model predictions as the actual probabilities. At longer leads, the skill of the models degrades, and skill uncertainty must be convolved with the uncertainties from initial conditions and differing model physics, leading to more climatological probabilities in the long-lead ENSO Outlook than might be suggested by the suite of models. Furthermore, the expected skill of one model versus another has not been established using uniform validation procedures, which may cause a difference in the true probability distribution from that taken verbatim from the raw model predictions.
An alternative way to assess the probabilities of the three possible ENSO conditions is more quantitatively precise and less vulnerable to sampling errors than the categorical tallying method used above. This alternative method uses the mean of the predictions of all models on the plume, equally weighted, and constructs a standard error function centered on that mean. The standard error is Gaussian in shape, and has its width determined by an estimate of overall expected model skill for the season of the year and the lead time. Higher skill results in a relatively narrower error distribution, while low skill results in an error distribution with width approaching that of the historical observed distribution. This method shows probabilities for La Niña at 50% for Mar-May, dropping to near 25% for Apr-Jun and 20% or less for May-Jul through the final season of Nov-Jan. Probabilities for neutral conditions begin at 50% for Mar-May, rise to a peak near 75% for Apr-Jun and May-Jul, after which they slowly drop to about 50-55% for Jul-Sep and to about 35-40% for Sep-Nov through Nov-Jan. El Niño probabilities, which begin at 0%, rise to nearly 25% for Jun-Aug, 40% for Sep-Nov and reach 48% by Nov-Jan. A plot of the probabilities generated from this most recent IRI/CPC ENSO prediction plume using the multi-model mean and the Gaussian standard error method summarizes the model consensus out to about 10 months into the future. The same cautions mentioned above for the distributional count of model predictions apply to this Gaussian standard error method of inferring probabilities, due to differing model biases and skills. In particular, this approach considers only the mean of the predictions, and not the total range across the models, nor the ensemble range within individual models.
In summary, the probabilities derived from the models on the IRI/CPC plume describe, on average, a toss-up on weak La Niña vs. neutral conditions conditions for Mar-May 2018, followed by a long period from Apr-Jun through Aug-Oct with neutral having the highest probability. Chances for El Niño are small through Jun-Aug 2018, rising to near 30% for Jul-Sep and in the 45-50% range for the final period of Nov-Jan. A caution regarding this latest set of model-based ENSO plume predictions, is that factors such as known specific model biases and recent changes that the models may have missed will be taken into account in the next official outlook to be generated and issued early next month by CPC and IRI, which will include some human judgment in combination with the model guidance.
The above is based on looking at a variety of models and other information but we should not forget that NOAA has their own model.
Here is another view of the same model with on the right the forecasts of the sea surface temperatures that result from the forecast. It is the model as of January 14 and is frozen i.e. will not update.
And here is what is called the plume of a varied of forecast models. We expect to have an updated version of this graphic next week.
Forecasts from Other Meteorological Agencies.
Here is the JAMSTEC Model Forecast
And the recently released short discussion.
Mar. 16, 2018. Prediction from 1st Mar., 2018 ENSO forecast:
The La Niña-like condition will disappear by late spring. Then the tropical Pacific will return to a normal state by summer.
Indian Ocean forecast:
A normal state in the tropical Indian Ocean will persist in 2018.
Atlantic Ocean forecast:
The Atlantic Niño appears to develop in 2018.
Regional forecast:
On a seasonal scale, most part of the Eurasian Continent will experience a warmer-than-normal condition in spring and summer. In India, however, we expect colder-than-normal condition in summer. Northwestern U.S., western Canada, northern Brazil, Peru, Ecuador, western, eastern and southern Africa, and northern Australia will experience a colder-than-normal condition in boreal spring. This colder condition in northern Brazil and southern Africa will stay even in boreal summer.
As regards to the seasonally averaged rainfall, a wetter-than-normal condition is predicted for the Philippines, Indochina, northern India, eastern Africa, Mexico, eastern U.S. and northern Brazil during boreal spring, whereas western/central U.S., Europe, Iran, Indonesia, southern China, Australia, southern Africa, and southern Brazil will experience a drier-than-normal condition during boreal spring. This drier condition will stay in Europe, central U.S., southeastern Australia, and Indonesia in summer.
Most part of Japan will experience warmer and wetter-than-normal conditions in spring and summer; we expect an active rainy season in 2018.
Here is the Nino 3.4 report from the Australian BOM (it updates every two weeks)
And the ENSO Outlook Discussion Issued on March 13, 2018
La Niña ends, El Niño-Southern Oscillation returns to neutral
The 2017–18 La Niña has ended. El Niño–Southern Oscillation (ENSO) indicators have eased back to neutral levels over the past several weeks. This means the ENSO Outlook has shifted from LA NIÑA to INACTIVE.
The end of the La Niña is clear in oceanic and atmospheric indices. Sea surface temperatures have warmed steadily since December, and are now in the neutral range. Waters beneath the surface have also warmed. In the atmosphere, cloudiness near the Date Line has returned to near-average levels, and trade winds are generally near average across the equatorial Pacific. Likewise, the Southern Oscillation Index (SOI) is well within the neutral range.
All eight of the surveyed international climate models indicate equatorial Pacific sea surface temperatures are likely to continue to warm over the coming months. Only one model anticipates NINO3.4 will meet La Niña thresholds for May, and all models predict ENSO will be in a neutral phase during the southern hemisphere winter.
All eight of the surveyed international climate models indicate equatorial Pacific sea surface temperatures are likely to continue to warm over the coming months. Only one model anticipates NINO3.4 will meet La Niña thresholds for May, and all models predict ENSO will be in a neutral phase during the southern hemisphere winter.
However, model accuracy during autumn is lower than at other times of year. A neutral ENSO pattern does not necessarily signify average rainfall and temperature for Australia. Rather, it indicates a reduced chance of prolonged very wet or dry, or very hot or cold conditions, and that other climate drivers may have greater influence over the coming months.
The weak and short–lived La Niña had relatively little effect on Australian rainfall patterns over the 2017–18 summer. However, it may have kept temperatures higher than average in southern parts of the country due to weather patterns being slower moving, and further south than normal.
Indian Ocean IOD (It updates every two weeks)
Indian Ocean Dipole Outlook Discussion Issued March 13, 2018
The Indian Ocean Dipole (IOD) is neutral. The weekly index value to 11 March was +0.23 °C. All six of the climate models surveyed by the Bureau indicate that the IOD will remain neutral into the southern hemisphere winter of 2018.
The influence of the IOD on Australian climate is weak during December to April. This is because the monsoon trough shifts south over the tropical Indian Ocean changing wind patterns, which prevents the IOD pattern from being able to form.
The IOD Forecast is indirectly related to ENSO but in a complex way. It is important to understand how and where the IOD is measured.
IOD Positive is the West Area being warmer than the East Area (with of course many adjustments/normalizations). IOD Negative is the East Area being warmer than the West Area. Notice that the Latitudinal extent of the western box is greater than that of the eastern box. This type of index is based on observing how these patterns impact weather and represent the best efforts of meteorological agencies to figure these things out. Global Warming may change the formulas probably slightly over time but it is costly and difficult to redo this sort of work because of long weather cycles.
D. Putting it all Together.
At this time it would seem that La Nina Conditions along the Equator are coming to an end. The actual impacts on Worldwide weather lag the change in conditions along the Equator so we will have impacts from this La Nina for two or three more months. But the situation for next Summer is not yet totally clear.
Forecasting Beyond Five Years.
So in terms of long-term forecasting, none of this is very difficult to figure out actually if you are looking at say a five-year or longer forecast.
The research on Ocean Cycles is fairly conclusive and widely available to those who seek it out. I have provided a lot of information on this in prior weeks and all of that information is preserved in Part II of my report in the Section on Low Frequency Cycles 3. Low Frequency Cycles such as PDO, AMO, IOBD, EATS. It includes decade by decade predictions through 2050. Predicting a particular year is far harder.
The odds of a climate shift for the Pacific taking place has significantly increased. It may be in progress. The AMO is pretty much neutral at this point (but more positive i.e. warm than I had expected) so it may need to become a bit more negative for the “McCabe A” pattern to become established. That seems to be slow to happen so I am thinking we need at least a couple more years for that to happen. Our assessment is that the standard time for Climate Shifts in the Pacific are likely to prevail and it most likely will be a gradual process with a speed up in less than five years but more than two years. The next El Nino may be the trigger and it is probably three or more years out.
E. Relevant Recent Articles and Reports
Weather in the News
Weather Research in the News
Extreme Short-Duration Temperature Changes in the U.S.
Global Warming in the News
Nothing to report.
F. Table of Contents for Page II of this Report Which Provides a lot of Background Information on Weather and Climate Science
The links below may take you directly to the set of information that you have selected but in some Internet Browsers it may first take you to the top of Page II where there is a TABLE OF CONTENTS and take a few extra seconds to get you to the specific section selected. If you do not feel like waiting, you can click a second time within the TABLE OF CONTENTS to get to the specific part of the webpage that interests you.
1. Very High Frequency (short-term) Cycles PNA, AO,NAO (but the AO and NAO may also have a low frequency component.)
2. Medium Frequency Cycles such as ENSO and IOD
3. Low Frequency Cycles such as PDO, AMO, IOBD, EATS.
4. Computer Models and Methodologies
5. Reserved for a Future Topic (Possibly Predictable Economic Impacts)
G. Table of Contents of Contents for Page III of this Report – Global Warming Which Some Call Climate Change.
The links below may take you directly to the set of information that you have selected but in some Internet Browsers it may first take you to the top of Page III where there is a TABLE OF CONTENTS and take a few extra seconds to get you to the specific section selected. If you do not feel like waiting, you can click a second time within the TABLE OF CONTENTS to get to the specific part of the webpage that interests you.
2. Climate Impacts of Global Warming
3. Economic Impacts of Global Warming
4. Reports from Around the World on Impacts of Global Warming
H. Useful Background Information
The current conditions are measured by determining the deviation of actual sea surface temperatures from seasonal norms (adjusted for Global Warming) in certain parts of the Equatorial Pacific. The below diagram shows those areas where measurements are taken.
NOAA focuses on a combined area which is all of Region Nino 3 and part of Region Nino 4 and it is called Nino 3.4. They focus on that area as they believe it provides the best correlation with future weather for the U.S. primarily the Continental U.S. not including Alaska which is abbreviated as CONUS. The historical approach of measurement of the impact of the sea surface temperature pattern on the atmosphere is called the Southern Oscillation Index (SOI) which is the difference between the atmospheric pressure at Tahiti as compared to Darwin Australia. It was convenient to do this as weather stations already existed at those two locations and it is easier to have weather stations on land than at sea. It has proven to be quite a good measure. The best information on the SOI is produced by Queensland Australia and that information can be found here. SOI is based on Atmospheric pressure as a surrogate for Convection and Subsidence. Another approach made feasible by the use of satellites is to measure precipitation over the areas of interest and this is called the El Nino – Southern Oscillation (ENSO) Precipitation Index (ESPI). We covered that in a weekly Weather and Climate Report which can be found here. Our conclusion was that ESPI did not differentiate well between La Nina and Neutral. And there is now a newer measure not regularly used called the Multivariate ENSO Index (MEI). More information on MEI can be found here. The jury is still out on MEI and it it is not widely used.
The below diagram shows the usual location of the Indo-Pacific Warm Pool. When the warm water shifts to the east we have an El Nino; to the west a La Nina.
Interaction between the MJO and ENSO
This Table is a first attempt at trying to relate the MJO to ENSO
El Nino La Nina MJO Active Phase MJO Inactive Phase Relationship of MJO and ENSO Eastern Pacific Easterlies Western Pacific Westerlies MJO Active Phase MJO Inactive Phase
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
Table needs more work. Is intended to show the interactions. What is more difficult is determining cause and effect. This is a Work in Progress.
History of ENSO Events as measured by the ONI
The new SON reading of -0.8 is the fourth La Nina Reading. These would have to extend through JFM 2018 for this to be recorded as a La Nina. The chances of this are about 80:20. These are three-month averages so JFM is pretty much determined since two months are in. The key will be March. Will March be sufficiently Neutral to have the three-month average be Neutral? It would have to be slightly positive to have the average be above -0.5 and that is now unlikely but possible. Not all Meteorological Agencies Worldwide will necessarily accept this La Nina to be legitimately declared. The full history of the ONI readings can be found here. The MEI index readings can be found here.
Four Quadrant Jet Streak Model Read more here This is very useful for guessing at weather as a trough passes through. It would apply to the states that are at the apex of the trough.
If the centripetal accelerations owing to flow curvature are small, then we can use the “straight” jet streak model. The schematic figure directly below shows a straight jet streak at the base of a trough in the height field. The core of maximum winds defining the jet streak is divided into four quadrants composed of the upstream (entrance) and downstream (exit) regions and the left and right quadrants, which are defined facing downwind.
Isotachs are shaded in blue for a westerly jet streak (single large arrow). Thick red lines denote geopotential height contours. Thick black vectors represent cross-stream (transverse) ageostrophic winds with magnitudes given by arrow length. Vertical cross sections transverse to the flow in the entrance and exit regions of the jet (J) are shown in the bottom panels along A-A’ and B-B’, respectively. Convergence and divergence at the jet level are denoted by “CON” and “DIV”. “COLD” and “WARM” refer to the air masses defined by the green isentropes.
[Editor’s Note: There are many undefined words in the above so here are some brief definitions. Isotachs are lines of equal wind speed. Convergence is when there is an inflow of air which tends to force the air higher with cooling and cloud formation. Divergence is when there is an outflow of air which tends to result in air sinking which causes drying and warming, Confluence is when two streams of air come together. Diffluence is when part of a stream of air splits off.]
Here is a time sequence animation. You may have to click on them to get the animation going.
When we discuss the jet stream and for other reasons, we often discuss different layers of the atmosphere. These are expressed in terms of the atmospheric pressure above that layer. It is kind of counter-intuitive to me. The below table may help the reader translate air pressure to the usual altitude and temperature one might expect at that level of air pressure. It is just an approximation but useful.
Re the above, H8 is a frequently used abbreviation for the height of the 850 millibar level (which is intended to represent the atmosphere above the Boundary Layer most impacted by surface conditions), H7 is the 700 mb level, H5 is the 500 mb level, H3 is the 300 mb level. So if you see those abbreviations in a weather forecast you will know what they are talking about.
Tropical Activity Possibly Impacting CONUS.
When there is activity and I have not provided the specific links to the storm of “immediate” interest, one can obtain that information at this link. At this point in time, no (new) tropical events are expected to appear in this graphic during the next 48 hours. If that changes, we will provide an update.
Now let us look at the Western Pacific in Motion.
The above graphic which I believe covers the area from the Dateline west to 100E and from the Equator north to 45N normally shows the movement of tropical storms towards Asia in the lower latitudes (Trade Winds) and the return of storms towards CONUS in the mid-latitudes (Prevailing Westerlies). This is recent data not a forecast. But, it ties in with the Week 1 forecast in the graphic just above this graphic. Information on Western Pacific storms can be found by clicking here. This (click here to read) is an unofficial private source but one that is easy to read.