econintersect.com
  • 토토사이트
    • 카지노사이트
    • 도박사이트
    • 룰렛 사이트
    • 라이브카지노
    • 바카라사이트
    • 안전카지노
  • 경제
  • 파이낸스
  • 정치
  • 투자
No Result
View All Result
  • 토토사이트
    • 카지노사이트
    • 도박사이트
    • 룰렛 사이트
    • 라이브카지노
    • 바카라사이트
    • 안전카지노
  • 경제
  • 파이낸스
  • 정치
  • 투자
No Result
View All Result
econintersect.com
No Result
View All Result
Home Uncategorized

How Tiny Gold Particles Injected Into Tumours Could Improve Radiation Treatment For Cancer

admin by admin
9월 6, 2021
in Uncategorized
0
0
SHARES
0
VIEWS

from The Conversation

— this post authored by Devika Basnagge Chithrani, University of Victoria

Cancer is the second leading cause of death globally. In 2018, there were 18.1 million new cases and 9.5 million cancer-related deaths worldwide. By 2040, the number of new cancer cases per year is expected to rise to 29.5 million and the number of cancer-related deaths to 16.4 million.


Please share this article – Go to very top of page, right hand side, for social media buttons.


Approximately 50 per cent of all cancer patients can benefit from radiotherapy in the management of their disease. About half of those patients are diagnosed early enough that their cancer may be curable. For many cancers including breast, prostate, cervix, head and neck, lung and brain cancers, curative treatment includes radiation therapy. However, because radiotherapy destroys healthy cells as well as tumour cells, doses are limited.

Radiotherapy, also called radiation therapy, is used alone to treat cancer or with other treatment options such as chemotherapy and surgery. It may also be used to shrink the tumour before surgery. In radiotherapy, tumour cells – which divide much faster than other surrounding healthy cells – are destroyed by damaging their DNA.

The limiting factor in cancer radiotherapy is that doses high enough to try to cure tumours also damage surrounding normal tissues. (Shutterstock)

Side-effects limit radiation dose

The limiting factor in radiotherapy is that doses high enough to try to cure high-risk (locally advanced) non-metastatic tumours also damage surrounding normal tissues. Currently, we are at the limit of radiotherapy dose that can be given to patients. To further improve survival, there is a need for new methods that enhance radiation effectiveness while reducing side-effects.

One way to accomplish this is by making tumour cells more sensitive to radiation, so those cells are more easily damaged by radiation therapy. Using gold nanoparticles as radiosensitizers has shown promising results. These gold nanoparticles can be introduced intravenously to accumulate in the tumour by exploiting the faulty walls of the tumour’s blood vessels, which tend to be leaky because of fast growth.

Gold nanoparticles interact with X-ray photons used in radiation treatment which produces electrons, which then interact with water molecules to produce free radicals. These free-radicals can damage cells, lowering the survival of those cells.

Understanding the complex biological system present in and around the tumour is essential for optimizing the use of the radiosensitizing GNPs, as outlined by a consortium of labs, including our own nanoscience and technology development laboratory at University of Victoria.

Targeting interactions inside the tumour

In this work, we discuss the importance of looking into which cellular components within the tumour microenvironment take up the gold nanoparticles and become radiosensitized. We are particularly interested in cells called activated fibroblasts, which are associated with wound healing and have anti-tumourogenic properties, meaning they help fight tumour growth.

However, activated fibroblasts can be recruited by the tumour cells, and become cancer-associated fibroblasts (CAFs). Instead of anti-tumourigenic properties, CAFs promote the proliferation and metastasis of tumours.

Illustration of the types of cells found in the microenvironment of a tumour.

Incorporating gold nanoparticles into current radiation treatment protocols had three goals: to enhance killing of tumour cells, to target CAFs and to protect fibroblasts. Reproduced with permission (Bromma et al.(2020), Sci Reports, 10, 2181)., Author provided

The function of CAFs supports the idea that tumours are “wounds that do not heal,” and targeting CAFs may prove beneficial towards improved cancer treatment outcomes.

As illustrated in the image above, our research on incorporating gold nanoparticles into current radiation treatment protocols had three goals: to enhance killing of tumour cells, to target CAFs and to protect fibroblasts.

For radiosensitizing to be effective in improving radiation treatment, the cells targeted by the treatment (the ones associated with cancer growth) need to have high uptake of the radiosensitizing particles, while the beneficial cells need to have a low uptake. This makes the targeted cells are more easily destroyed by radiation therapy at doses that patients can tolerate.

These results using 3D tumours grown in the lab are very encouraging. The CAFs had the largest uptake of the gold nanoparticles per cell, with almost triple that of cancer cells, while fibroblasts had a relatively small number. This also translated to a larger increase in DNA damage in the CAFs compared to the other cell types, reducing the activity of the CAFs and slowing tumour growth.

This difference in DNA damage due to selective targeting of cancer-associated cells over normal cells may allow gold nanoparticles to be an effective tool in future cancer radiation therapy, helping to minimize damage to normal tissue while improving local radiation therapy dose to the tumour.

Gold nanoparticles in red against a green background of the tumour, with a bar graph showing uptake of the nanoparticles.

Accumulation of gold nanoparticles (red) in the tumour environment. Reproduced with permission (Bromma et al.(2020), Sci Reports, 10, 2181)., Author provided

This study showcases that using gold nanoparticles as a radiosensitizer allows more damage to be propagated to the CAFs, an element that has shown to be largely influential to the progression of cancer. We believe that this work will be a building block towards a more effective treatment regime in the near future. Building a model that can accurately represent the different interactions taking place inside the tumour’s microenvironment is essential to improving treatment results for patients.The Conversation

Devika Basnagge Chithrani, Associate professor, Physics and Astronomy/Medical physics, University of Victoria

This article is republished from The Conversation under a Creative Commons license. Read the original article.

.

Previous Post

Average Gasoline Prices for Week Ending 28 June 2021 Up $0.93 From A Year Ago

Next Post

Is The 4-Day Work Week Inevitable?

Related Posts

Scammers Steal $300K Using Fake Blur Airdrop Websites
Uncategorized

FBI Warns Investors Of Crypto-Stealing Play-to-Earn Games

by admin
Maersk Almost Completing Russia Exit After The Sale Of Logistics Sites
Uncategorized

Maersk Almost Completing Russia Exit After The Sale Of Logistics Sites

by admin
Why Is ‘Staking’ At The Center Of Crypto’s Latest Regulation Scuffle
Uncategorized

Why Is ‘Staking’ At The Center Of Crypto’s Latest Regulation Scuffle

by admin
Mexico's Pemex Dismantled Resources Worth $342M From Two Top Fields
Uncategorized

Mexico’s Pemex Dismantled Resources Worth $342M From Two Top Fields

by admin
Oil Giant Schlumberger Rebrands Itself As SLB For Low-Carbon Future
Uncategorized

Oil Giant Schlumberger Rebrands Itself As SLB For Low-Carbon Future

by admin
Next Post
Final August 2021 Michigan Consumer Sentiment Shows A Stunning Loss Of Confidence

Final August 2021 Michigan Consumer Sentiment Shows A Stunning Loss Of Confidence

답글 남기기 응답 취소

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

Browse by Category

  • Business
  • Econ Intersect News
  • Economics
  • Finance
  • Politics
  • Uncategorized

Browse by Tags

adoption altcoins bank banking banks Binance Bitcoin Bitcoin market blockchain BTC BTC price business China crypto crypto adoption cryptocurrency crypto exchange crypto market crypto regulation decentralized finance DeFi Elon Musk ETH Ethereum Europe Federal Reserve finance FTX inflation investment market analysis Metaverse NFT nonfungible tokens oil market price analysis recession regulation Russia stock market technology Tesla the UK the US Twitter

Categories

  • Business
  • Econ Intersect News
  • Economics
  • Finance
  • Politics
  • Uncategorized

© Copyright 2024 EconIntersect

No Result
View All Result
  • 토토사이트
    • 카지노사이트
    • 도박사이트
    • 룰렛 사이트
    • 라이브카지노
    • 바카라사이트
    • 안전카지노
  • 경제
  • 파이낸스
  • 정치
  • 투자

© Copyright 2024 EconIntersect