from The Conversation
— this post authored by Lorna McGregor, Daragh Murray, and Vivian Ng, University of Essex
Whether or not you realise or consent to it, big data can affect you and how you live your life. The data we create when using social media, browsing the internet and wearing fitness trackers are all collected, categorised and used by businesses and the state to create profiles of us. These profiles are then used to target advertisements for products and services to those most likely to buy them, or to inform government decisions.
Please share this article – Go to very top of page, right hand side, for social media buttons.
Big data enable states and companies to access, combine and analyse our information and build revealing – but incomplete and potentially inaccurate – profiles of our lives. They do so by identifying correlations and patterns in data about us, and people with similar profiles to us, to make predictions about what we might do.
But just because big data analytics are based on algorithms and statistics, does not mean that they are accurate, neutral or inherently objective. And while big data may provide insights about group behaviour, these are not necessarily a reliable way to determine individual behaviour. In fact, these methods can open the door to discrimination and threaten people’s human rights – they could even be working against you. Here are four examples where big data analytics can lead to injustice.
1. Calculating credit scores
Big data can be used to make decisions about credit eligibility, affecting whether you are granted a mortgage, or how high your car insurance premiums should be. These decisions may be informed by your social media posts and data from other apps, which are taken to indicate your level of risk or reliability.
But data such as your education background or where you live may not be relevant or reliable for such assessments. This kind of data can act as a proxy for race or socioeconomic status, and using it to make decisions about credit risk could result in discrimination.
2. Job searches
Big data can be used to determine who sees a job advertisement or gets shortlisted for an interview. Job advertisements can be targeted at particular age groups, such as 25 to 36-year-olds, which excludes younger and older workers from even seeing certain job postings and presents a risk of age discrimination.
Seek, but ye shall not always find. Shutterstock
Automation is also used to make filtering, sorting and ranking candidates more efficient. But this screening process may exclude people on the basis of indicators such as the distance of their commute. Employers might suppose that those with a longer commute are less likely to remain in a job long-term, but this can actually discriminate against people living further from the city centre due to the location of affordable housing.
3. Parole and bail decisions
In the US and the UK, big data risk assessment models are used to help officials decide whether people are granted parole or bail, or referred to rehabilitation programmes. They can also be used to assess how much of a risk an offender presents to society, which is one factor a judge might consider when deciding the length of a sentence.
It’s not clear exactly what data is used to help make these assessments, but as the move toward digital policing gathers pace, it’s increasingly likely that these programmes will incorporate open source information such as social medial activity – if they don’t already.
These assessments may not just look at a person’s profile, but also how their compares to others’. Some police forces have historically over-policed certain minority communities, leading to a disproportionate number of reported criminal incidents. If this data is fed into an algorithm, it will distort the risk assessment models and result in discrimination which directly affects a person’s right to liberty.
4. Vetting visa applications
Last year, the United States’ Immigration and Customs Enforcement Agency (ICE) announced that it wanted to introduce an automated “extreme visa vetting” programme. It would automatically and continuously scan social media accounts, to assess whether applicants will make a “positive contribution” to the United States, and whether any national security issues may arise.
As well as presenting risks to freedom of thought, opinion, expression and association, there were significant risks that this programme would discriminate against people of certain nationalities or religions. Commentators characterised it as a “Muslim ban by algorithm”.
The programme was recently withdrawn, reportedly on the basis that “there was no ‘out-of-the-box’ software that could deliver the quality of monitoring the agency wanted”. But including such goals in procurement documents can create bad incentives for the tech industry to develop programmes that are discriminatory-by-design.
There’s no question that big data analytics works in ways that can affect individuals’ opportunities in life. But the lack of transparency about how big data are collected, used and shared makes it difficult for people to know what information is used, how, and when. Big data analytics are simply too complicated for individuals to be able to protect their data from inappropriate use. Instead, states and companies must make – and follow – regulations to ensure that their use of big data doesn’t lead to discrimination.
Lorna McGregor, Director, Human Rights Centre, PI and Co-Director, ESRC Human Rights, Big Data and Technology Large Grant, University of Essex; Daragh Murray, Lecturer in International Human Rights Law at Essex Law School, University of Essex, and Vivian Ng, Senior Researcher in Human Rights, University of Essex
This article was originally published on The Conversation. Read the original article.