Global Economic Intersection
Advertisement
  • Home
  • Economics
  • Finance
  • Politics
  • Investments
    • Invest in Amazon $250
  • Cryptocurrency
    • Best Bitcoin Accounts
    • Bitcoin Robot
      • Quantum AI
      • Bitcoin Era
      • Bitcoin Aussie System
      • Bitcoin Profit
      • Bitcoin Code
      • eKrona Cryptocurrency
      • Bitcoin Up
      • Bitcoin Prime
      • Yuan Pay Group
      • Immediate Profit
      • BitQH
      • Bitcoin Loophole
      • Crypto Boom
      • Bitcoin Treasure
      • Bitcoin Lucro
      • Bitcoin System
      • Oil Profit
      • The News Spy
      • Bitcoin Buyer
      • Bitcoin Inform
      • Immediate Edge
      • Bitcoin Evolution
      • Cryptohopper
      • Ethereum Trader
      • BitQL
      • Quantum Code
      • Bitcoin Revolution
      • British Trade Platform
      • British Bitcoin Profit
    • Bitcoin Reddit
    • Celebrities
      • Dr. Chris Brown Bitcoin
      • Teeka Tiwari Bitcoin
      • Russell Brand Bitcoin
      • Holly Willoughby Bitcoin
No Result
View All Result
  • Home
  • Economics
  • Finance
  • Politics
  • Investments
    • Invest in Amazon $250
  • Cryptocurrency
    • Best Bitcoin Accounts
    • Bitcoin Robot
      • Quantum AI
      • Bitcoin Era
      • Bitcoin Aussie System
      • Bitcoin Profit
      • Bitcoin Code
      • eKrona Cryptocurrency
      • Bitcoin Up
      • Bitcoin Prime
      • Yuan Pay Group
      • Immediate Profit
      • BitQH
      • Bitcoin Loophole
      • Crypto Boom
      • Bitcoin Treasure
      • Bitcoin Lucro
      • Bitcoin System
      • Oil Profit
      • The News Spy
      • Bitcoin Buyer
      • Bitcoin Inform
      • Immediate Edge
      • Bitcoin Evolution
      • Cryptohopper
      • Ethereum Trader
      • BitQL
      • Quantum Code
      • Bitcoin Revolution
      • British Trade Platform
      • British Bitcoin Profit
    • Bitcoin Reddit
    • Celebrities
      • Dr. Chris Brown Bitcoin
      • Teeka Tiwari Bitcoin
      • Russell Brand Bitcoin
      • Holly Willoughby Bitcoin
No Result
View All Result
Global Economic Intersection
No Result
View All Result

Innovation and Government Incentives: Evidence from Biotech

admin by admin
December 8, 2014
in Uncategorized
0
0
SHARES
1
VIEWS
Share on FacebookShare on Twitter

by Enrico Moretti and Daniel J. Wilson – FRBSF Economic Letter, Federal Reserve Bank of San Francisco

Financial incentives from state governments are part of a growing trend of policies designed to spur innovation clusters in specific regions. Biotechnology industry clusters in particular have benefited from these subsidies, which have boosted the number of star biotech scientists in those states by roughly 15%. Likewise, the number of biotech jobs overall has grown in states that offered incentives, although they have had little impact on salaries. Incentives have also spilled over to generate sizable effects in local service sectors.


In recent decades, more state and local governments have adopted policies to foster economic activity in their regions. Indeed, it is rare for a large U.S. research facility or new industry to open its doors without local governments providing some form of subsidy.

Yet, despite the growing importance of these incentives, their effects on state economies are not well understood. In thisEconomic Letter, we investigate the effects of state-provided incentives on local biotechnology industry clusters and the broader state economy. Our findings suggest that incentives appear to encourage growth in the states that offer them. State subsidies help attract star scientists and increase local jobs, although there is little overall effect on regional salaries. By spurring clusters of innovative industries, these states reap further benefits from economic growth spilling over to other local service sectors. Of course, for state policymakers these benefits must be weighed against the cost of the subsidies—that is, the benefits of spending those funds differently—which is outside the scope of our analysis.

The shape of state incentives

Many states have turned to an increasingly common economic policy, offering financial incentives to spur innovation-based clusters of high-tech and life-science businesses. Local policymakers find such clusters desirable as a way to generate what economists call “agglomeration economies.” This term refers to the local economic value generated by having many businesses and industries close to each other that are engaged in complementary activities. One example of an agglomeration economy is Silicon Valley, where information technology firms are heavily concentrated and often provide services and ideas to each other. Similarly, the biotechnology industry, “biotech” for short, is heavily clustered: a large fraction of the industry’s jobs are concentrated in Boston/Cambridge, the San Francisco Bay area, San Diego, New Jersey, Raleigh-Durham, and the Washington, DC area. This concentration is consistent with strong formal and informal linkages among the biotech companies in each of these areas.

As of 2010, 11 states provided some type of incentive for biotech firms, and the generosity of these plans appears to be growing. In addition, over the past two decades, tax credits offered by states for general research and development (R&D) have become increasingly important. As of 2010, 34 states provided a broad-based tax credit on R&D, and the average effective credit rate approximately quadrupled over this period to around 6%, which is about half the value of the effective federal R&D credit rate. In several states, in fact, the state credit is actually more generous than the federal credit.

Analyzing state incentives

To investigate these trends, we gathered a rich data set on biotech-specific incentives and general R&D tax credits, combined with information on economic activity in a given state and year for both the biotech sector and the state overall. We use this data to first explore the kinds of incentives state governments provide that benefit biotech companies. We then estimate the economic effects of these incentives and report the results of our empirical analysis.

We focused our analysis on two types of state-specific incentives for innovation: R&D tax credits and biotech-specific subsidies. The former provide a credit against a business’s income taxes that is proportional to its expenditures on qualified R&D. These credits are not specific to biotech R&D or biotech companies; however, since R&D costs are disproportionately important to biotech companies, it is obviously a significant cost shifter for the industry.

In addition to generic R&D tax credits, states have adopted a variety of specific fiscal incentives to attract biotech activity. These include tax credits on investment or job creation by biotech companies, sales and use tax exemptions for purchasing equipment used in biotech activity, low-interest loans to biotech start-ups, and lump sum grants to biotech companies. This wide variety makes it difficult to quantify and compare the financial values of these different incentives, so we simply assess the average economic effects from a state having a biotech-specific incentive versus not having one.

Measuring biotech activity

To evaluate the effects of incentives for biotech, we compiled data on a host of measures of state economic activity in the sector.

First, we look at biotech patenting. We use data on patents to identify the location of “star” biotech scientists and to measure biotech innovation in a state. We define star biotech inventors in a given year as those who are in the top 5% in the nation for the number of biotech patents they have received over the past 10 years. In other words, stars are exceptionally prolific patenters in the biotech field. The 5% cutoff is arbitrary, but using other percentages does not affect our empirical results.

In addition to these measures of biotech innovation, we look at employment, wages, and number of establishments in the biotech sector. While we can precisely assign patents to the biotech field, the same is not true for official labor market and establishment data. We consider three different industries as potentially reflecting biotech activity: pharmaceutical and medicine manufacturing; pharmaceutical preparation manufacturing; and research and development in the physical, engineering, and life sciences. None of these industries perfectly captures the biotech sector, as each of them excludes parts of biotech and includes parts of other sectors. However, there is enough overlap with biotech that any economically significant impact of subsidies on biotech should show up as an impact in one or more of these three industries.

Impact of incentives on biotech activity

Turning to the empirical results, we find that both biotech-specific subsidies and general R&D tax credits in a given state significantly increase the number of biotech star scientists residing there. The adoption of biotech subsidies raises the number of star scientists in a state by 15% relative to that state’s pre-adoption number of stars. We find a similar effect from the adoption of R&D credits. These findings are important because of the role star scientists play on the local development and survival of U.S. biotech clusters. In addition, we find that most of the increase in the number of stars is due to their relocation to states that adopt incentives. Meanwhile, subsidies have only a limited effect on the productivity, measured by patenting, of incumbent scientists already in the state. We also find that the increase in star scientists happening after a state adopts a biotech incentive is entirely due to an increase in private/for-profit sector scientists, with no detectable increase in academic scientists.

As for overall biotech employment, we find that the effect of biotech-specific incentives is not limited to top scientists but it extends to other parts of the biotech workforce. We see significant effects on total employment in all three industries in our data, that is, the two pharmaceutical-related industry groups and the scientific R&D industry. The size of the incentives’ effect on total biotech employment is generally similar to its effect on the number of star scientists. This suggests that the incentives do not alter the share of stars in a state’s biotech workforce.

We find that biotech-specific and R&D incentives on average have limited effects on salaries in the three industries we study. This is consistent with the notion that workers are fairly mobile across states. If a state’s incentives led to significantly higher local biotech salaries, then some biotech workers would be likely to relocate to that state, increasing local labor supply and driving salaries back down. While we do not have a direct measure of biotech start-ups, we find that the number of biotech-related business establishments also increases after a state adopts incentives. On the other hand, we find limited effects on the total number of biotech patents in a state following the adoption of an incentive, possibly because it takes time for biotech research to come to fruition.

Finally, consistent with positive effects spilling over to other parts of the local economy, we find that incentives have an indirect effect on the local nontraded sector, including retail, construction, and real estate. That is, by increasing employment in biotech, incentives appear to indirectly boost employment in local services, like construction and retail, whose demand reflects the strength of the local economy.

In further analysis, we tested whether the increased biotech activity in a state resulting from incentives might come at the expense of nearby states. We found little evidence that incentives produced any such “beggar thy neighbor” effects for states that are geographically close or for those that are economically close as measured by the flows of worker migration. Thus, if incentives in one state cause reduced biotech activity in any other states, the reduction is likely to be national in scope.

Conclusions

States forgo billions of dollars in tax revenue to attract economic activity—especially activity perceived to be high-tech or innovative—even though little is known about how these incentives affect the local economy. In this Letter, we examined how effective these policies are at attracting jobs in the biotech sector. We found that, after states adopted incentives, they experienced significant increases in the number of star scientists, the total number of biotech workers, and the number of establishments, but limited effects on salaries and patents. We also uncovered significant spillover effects from biotech incentives to employment in other sectors that provide services in the local economy such as retail and construction.

In terms of policy implications, it is important to keep in mind that our finding that biotech subsidies are successful at attracting star scientists and at raising local biotech employment do not necessarily imply that the subsidies are economically justified. The economic benefits to a state of providing these incentives must be weighed against their fiscal costs—for instance, the loss of tax revenues and resulting loss of public services. Our research suggests that state incentives are successful at increasing the number of jobs inside the state. Nevertheless, our results do not suggest that the social benefit—either for that state or for the nation as a whole—is larger than the cost to taxpayers, nor that incentives for innovation are the most effective way to increase jobs in a state.

Disclaimer

Opinions expressed in FRBSF Economic Letter do not necessarily reflect the views of the management of the Federal Reserve Bank of San Francisco or of the Board of Governors of the Federal Reserve System.

Source: http://www.frbsf.org/economic-research/publications/economic-letter/2014/december/biotechnology-biotech-economic-growth

About the Authors

Enrico Moretti is a professor of economics at the University of California, Berkeley.

Daniel J. Wilson is a research advisor in the Economic Research Department of the Federal Reserve Bank of San Francisco.

Reference

Moretti, Enrico, and Daniel J. Wilson. 2014. “State Incentives for Innovation, Star Scientists and Jobs: Evidence from Biotech.” Journal of Urban Economics 79(1, January), pp. 20–38.

Previous Post

Infographic of the Day: 21 Secrets to Acing a Business Job Interview

Next Post

SEC Sanctions Operator of Bitcoin-Related Stock Exchange for Registration Violations

Related Posts

Unlock the Future of Fashion with NFTs and Wearables
Business

Unlock the Future of Fashion with NFTs and Wearables

by John Wanguba
May 27, 2023
Are Bitcoin Casinos Legal?
Business

Are Bitcoin Casinos Legal?

by John Wanguba
May 26, 2023
What Are Deposit Tokens?
Economics

What Are Deposit Tokens?

by John Wanguba
May 22, 2023
If The Stock Market Crashes, What Will Happen To Bitcoin?
Finance

If The Stock Market Crashes, What Will Happen To Bitcoin?

by John Wanguba
May 20, 2023
Who Will Win XRP vs SEC Case?
Econ Intersect News

Who Will Win XRP vs SEC Case?

by John Wanguba
May 20, 2023
Next Post

SEC Sanctions Operator of Bitcoin-Related Stock Exchange for Registration Violations

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Browse by Category

  • Business
  • Econ Intersect News
  • Economics
  • Finance
  • Politics
  • Uncategorized

Browse by Tags

adoption altcoins bank banking banks Binance Bitcoin Bitcoin adoption Bitcoin market blockchain BTC business China crypto crypto adoption cryptocurrency crypto exchange crypto market crypto regulation decentralized finance DeFi Elon Musk ETH Ethereum Europe Federal Reserve finance FTX inflation investment market analysis Metaverse NFT nonfungible tokens oil market price analysis recession regulation Russia stock market technology Tesla the UK the US Twitter

Archives

  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • August 2010
  • August 2009

Categories

  • Business
  • Econ Intersect News
  • Economics
  • Finance
  • Politics
  • Uncategorized
Global Economic Intersection

After nearly 11 years of 24/7/365 operation, Global Economic Intersection co-founders Steven Hansen and John Lounsbury are retiring. The new owner, a global media company in London, is in the process of completing the set-up of Global Economic Intersection files in their system and publishing platform. The official website ownership transfer took place on 24 August.

Categories

  • Business
  • Econ Intersect News
  • Economics
  • Finance
  • Politics
  • Uncategorized

Recent Posts

  • Unlock the Future of Fashion with NFTs and Wearables
  • Are Bitcoin Casinos Legal?
  • What Are Deposit Tokens?

© Copyright 2021 EconIntersect - Economic news, analysis and opinion.

No Result
View All Result
  • Home
  • Contact Us
  • Bitcoin Robot
    • Bitcoin Profit
    • Bitcoin Code
    • Quantum AI
    • eKrona Cryptocurrency
    • Bitcoin Up
    • Bitcoin Prime
    • Yuan Pay Group
    • Immediate Profit
    • BitIQ
    • Bitcoin Loophole
    • Crypto Boom
    • Bitcoin Era
    • Bitcoin Treasure
    • Bitcoin Lucro
    • Bitcoin System
    • Oil Profit
    • The News Spy
    • British Bitcoin Profit
    • Bitcoin Trader
  • Bitcoin Reddit

© Copyright 2021 EconIntersect - Economic news, analysis and opinion.

en English
ar Arabicbg Bulgarianda Danishnl Dutchen Englishfi Finnishfr Frenchde Germanel Greekit Italianja Japaneselv Latvianno Norwegianpl Polishpt Portuguesero Romanianes Spanishsv Swedish