econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 23 October 2015

Infographic Of The Day: Surviving Mars

The fictional Ares 3 mission in Andy Weir's novel "The Martian" is based on an actual NASA plan for exploration of the Red Planet.

When he is stranded after his astronaut team leaves without him, Mark Watney must struggle to survive. Matt Damon stars as Watney in Ridley Scott’s film of "The Martian."

If you were left on Mars without a spacesuit, you would immediately freeze and choke, then die. The air on Mars is toxic: It’s more than 95 percent carbon dioxide with just a trace of oxygen (0.13 percent). Air pressure on Mars is equivalent to that at about 21 miles altitude (38 kilometers) on Earth. It's cold: planetwide, about minus 67 degrees Fahrenheit (minus 55 degrees Celsius), although it may get up to almost room temperature at the equator, on the hottest summer day.

The Ares mission strategy is to land an empty habitation module (Hab) with supplies and a Mars Ascent Vehicle (MAV) first, before sending humans. Automatic equipment chemically breaks down Martian air into breathing oxygen and fuel for the return trip. Only when the tanks are full does the first expedition leave Earth. This is called in-situ resource utilization, or "living off the land."

The Hab module in the film carries only enough supplies to support Watney for about 300 days, but it will be years before a rescue from Earth is possible. His equipment can make breathable air from the local atmosphere, but food is a problem. Watney, a botanist, figures out how to grow crops on Mars to keep himself alive.

Starting in 2014, real-life astronauts on the International Space Station used the "Veggie" plant growth system to grow edible greens in space.

A proof-of-concept experiment called MOXIE (Mars Oxygen In-Situ Resources Utilization Experiment) will ride aboard NASA's Mars 2020 rover (inset, below). Carbon-dioxide-rich Martian air is flowed over a sandwich of anode and cathode plates. A process of solid oxide electrolysis splits the air into oxygen and waste carbon monoxide gas, which can be dumped back into the atmosphere.

Some of the Ares mission's equipment is powered by a radioisotope thermoelectric generator (RTG). This nuclear generator releases 100 watts of power by means of the heat generated by the radioactive decay of plutonium. Similar generators were used by the New Horizons Pluto probe and on the moon by Apollo astronauts.

The Ares 3 habitat is located on Mars' Acidalia Planitia, a vast plain in the Martian northern hemisphere. Although author Weir describes the plain as flat and easily traversed, satellite photos taken recently by NASA have revealed terrain on the real Acidalia Planitia to be rugged and hard to navigate.

Watney's Ares 3 camp is about 500 miles (800 km) north of the robotic Mars Pathfinder lander that landed in 1997. The one vehicle that is capable of taking Watney off the planet is at the Ares 4 site, 2,000 miles (3,200 km) away in the crater Schiaparelli. Once in orbit, Watney would still be stranded because the Hermes, the Ares 3 mission's mother ship, had already departed.

Watney's Ares 3 base is equipped with two pressurized, electric-powered rovers. Actual NASA plans include a very similar rover, the 14.7-foot-long (4.5 meters) Space Exploration Vehicle (SEV).  

The rover's pressurized cabin can hold up to four astronauts in shirtsleeves. A side hatch allows the SEV to dock to another rover or to a habitat module. Two "suit port" hatches allow two astronauts to slide into their spacesuits from the rear.

The wheeled chassis can be used by itself as an unpressurized, stand-up roving vehicle.

The Mars program depicted in the film and in the book features a reusable, International-Space-Station-size mother ship, the Hermes.

In the film, the Hermes is an ion-drive interplanetary spacecraft powered by a nuclear reactor. An external carousel spins to produce artificial gravity for the crew. Solar panels turn sunlight into electricity to run shipboard systems.

A NASA design for a Mars ship uses a bimodal nuclear thermal rocket. "Bimodal" means that the nuclear engine is used for both propulsion and electric power generation. The crew resides in a hab module at the front of the spacecraft.  The entire ship is rotated end over end to provide artificial gravity.

The proper alignment for an energy-efficient flight between Earth and Mars occurs every 2.13 years.

Six astronauts are launched from Earth in an Orion crew vehicle. Their capsule intercepts Hermes in "parking orbit" around Earth.

Hermes' ion-drive engines use electricity to propel argon atoms out of the back of the vehicle to create forward thrust. The acceleration is tiny, but the engines fire continuously all the way to Mars, a trip of 124 days.

After arriving in Mars orbit, the crew transfers to a Mars Descent Vehicle (MDV). The crew lands near a Hab module containing supplies prepositioned by previous unmanned missions. Two surface exploration vehicles (SEVs, or rovers) are available for wide-ranging exploration of the Martian surface.

The crew can stay on Mars either 30 days or 500 days, depending on the mission plan. The Ares 3 mission depicted in "The Martian" is a 30-day "short stay" mission.

When the alignment between Earth and Mars is again correct, the crew boards a Mars Ascent Vehicle (MAV) and blasts off. In orbit, the crew catches up to the Hermes and powers up its ion engines for the return to Earth.

When Hermes returns to Earth orbit, the crew disembarks. Another crew boards the Hermes to prepare the ship for another trip to Mars.

[click here to enlarge infographic]

Comparison of
Source SPACE.com: All about our solar system, outer space and exploration.

Source: http://www.space.com/30400-the-martian-how-to-stay-alive-on-mars-infographic.html

Click here for Historical Infographic Post Listing



>>>>> Scroll down to view and make comments <<<<<<










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Infographics


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
Minsky’s Theory of Asset Prices: Why Minsky Was NOT a Neo-Monetarist
The BuildZoom And Urban Economics Lab Index: Third Quarter 2016
News Blog
January 2017 Philly Fed Manufacturing Survey Significantly Improves and Remains In Expansion.
December 2016 Residential Building Sector Mixed
14 January 2017 Initial Unemployment Claims Rolling Average Improvement Continues
Stock Market Bull Faces Important Test
Infographic Of The Day: Movies That Struck Oil
Early Headlines: Asia Stocks Mixed, Dollar Steady, Oil Up, Top US Poll Priority Is Health Care, Tough Questions For Tom Price, Russia Has Buyer's Remorse, Mexico Fears Trump And More
Documentary Of The Week: Value And Thermodynamics
Can Serena Make It 23
Number Of Bitcoin ATMs By Country
How Old Is Our Moon?
Advantages And Disadvantages Of The EU According To Business Leaders
What We Read Today 18 January 2017
January 2017 Beige Book: Reading Between The Lines - Little Change in the Rate of Growth
Investing Blog
Technical Nuggets: Is There A Trump-Air Pocket Ahead?
Technical Thoughts: Three Trading Ideas
Opinion Blog
A New Deal With Capitalism Requires A Revolution In Politics And Markets
A Letter To Warren Buffett And Charlie Munger About Hiring Proven Whistleblowers
Precious Metals Blog
Four Catalysts Drive Gold And Silver For 2017
Live Markets
19Jan2017 Pre-Market Commentary: Wall Street To Open Flat, Building Permits Down, Philadelphia Fed Manufacturing Up, Jobless Claims Down
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government





























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2017 Econintersect LLC - all rights reserved