econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 19 August 2017

Noise From Offshore Oil And Gas Surveys Can Affect Whales Up To 3km Away

from The Conversation

-- this post authored by Rebecca Dunlop and Michael Noad, The University of Queensland

Air guns used for marine oil and gas exploration are loud enough to affect humpback whales up to 3km away, potentially affecting their migration patterns, according to our new research.


Please share this article - Go to very top of page, right hand side, for social media buttons.


Whales’ communication depends on loud sounds, which can travel very efficiently over distances of tens of kilometres in the underwater environment. But our study, published recently in the Journal of Experimental Biology, shows that they are affected by other loud ocean noises produced by humans.

As part of the BRAHSS (Behavioural Response of Humpback whales to Seismic Surveys) project, we and our colleagues measured humpback whales’ behavioural responses to air guns like those used in seismic surveys carried out by the offshore mining industry.


Read more: It’s time to speak up about noise pollution in the oceans


Air guns are devices towed behind seismic survey ships that rapidly release compressed air into the ocean, producing a loud bang. The sound travels through the water and into the sea bed, bouncing off various layers of rock, oil or gas. The faint echoes are picked up by sensors towed by the same vessel.

During surveys, the air guns are fired every 10-15 seconds to develop a detailed geological picture of the ocean floor in the area. Although they are not intended to harm whales, there has been concern for many years about the potential impacts of these loud, frequent sounds.

Sound research

Although it sounds like a simple experiment to expose whales to air guns and see what they do, it is logistically difficult. For one thing, the whales may respond to the presence of the ship towing the air guns, rather than the air guns themselves. Another problem is that humpback whales tend to show a lot of natural behavioural variability, making it difficult to tease out the effect of the air gun and ship.

There is also the question of whether any response by the whales is influenced more by the loudness of the air gun, or how close the air blast is to the whale (although obviously the two are linked). Previous studies have assumed that the response is driven primarily by loudness, but we also looked at the effect of proximity.

We used a small air gun and a cluster of guns, towed behind a vessel through the migratory path of more than 120 groups of humpback whales off Queensland’s sunshine coast. By having two different sources, one louder than the other, we were able to fire air blasts of different perceived loudness from the same distance.

We found that whales slowed their migratory speed and deviated around the vessel and the air guns. This response was influenced by a combination of received level and proximity; both were necessary. The whales were affected up to 3km away, at sound levels over 140 decibels, and deviated from their path by about 500 metres. Within this “zone", whales were more likely to avoid the air guns.

Each tested group moved as one, but our analysis did not include the effects on different group types, such as a female with calf versus a group of adults, for instance.

The ConversationOur results suggest that when regulating to reduce the impact of loud noise on whale behaviour, we need to take into account not just how loud the noise is, but how far away it is. More research is needed to find out how drastically the whales’ migration routes change as a result of ocean mining noise.

Rebecca Dunlop, Senior Lecturer in Physiology, The University of Queensland and Michael Noad, Associate Professor, The University of Queensland

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted. You can also comment using Facebook directly using he comment block below.




Econintersect Contributors








search_box
Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.







Keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government





























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2017 Econintersect LLC - all rights reserved