econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 19 April 2017

Death Metal: How Nickel Played A Role In The World's Worst Mass Extinction

from The Conversation

-- this post authored by Margaux Le Vaillant, CSIRO

Around 250 million years ago, life on Earth nearly came to an end, in a mass extinction between the Permian and Triassic periods known as the Great Dying. Some 90% of the species in the oceans and 70% of vertebrate families on land were killed, and the great marine life experiment of the Palaeozoic era was brought to a halt.


Please share this article - Go to very top of page, right hand side for social media buttons.


What does this have to do with nickel? Well, as part of my recent work as a mining geologist, which involves studying the world’s most valuable nickel ore deposits in Siberia, I uncovered evidence of a link between ore genesis - how the nickel got there - and the onset of the Great Dying. These results were recently published in the Proceedings of the National Academy of Sciences.

It was an exceedingly strange world 250 million years ago, and finding the culprits for the world’s worst mass extinction is like putting together a puzzle.

Earth, fire, water

This catastrophic episode was triggered by several different events, which in turn killed the world’s species in different ways: declining oxygen levels in the ocean, massively rising temperatures, and a possible meteor impact.

One of these trigger events involved a major jolt to the carbon cycle, which had dramatic climate effects. Some scientists think the temperature of the upper level of the world’s oceans and rivers increased from 21℃ to 38℃ in the late Smithian era (250.7 million years ago).

This shift in the carbon cycle has been attributed to a major burst of activity of deep marine colonies of Archaea methanosarcina, relatives of bacteria. These colonies had acquired a new way of getting energy from their environment. In much the same way as human bodies get energy from food, producing carbon dioxide in the process, these organisms got energy from transforming organic carbon into methane.

The archaea colonies were normally limited by the amount of nickel in the oceans, but for some reason, 250 million years ago, nickel seems to have been in abundant supply compared with today.

At the same time as the Great Dying, in an area on Earth that we now call Siberia, an astronomical amount of lava generated in the guts of the Earth erupted over an area the size of Europe. This province is the host to the Noril’sk ore deposits, the Earth’s most valuable source of mined nickel.

Noril'sk mine and town, 2014. Author provided

Scientists previously thought that nickel released into the atmosphere could explain the glut of marine nickel 250 million years ago. But how could nickel get into the air? This is where our work comes in.

Volcanoes and champagne

Let’s take a step back: how do nickel ore deposits form from molten rock (or magma)? Magma rich in nickel needs to come all the way to shallow depths beneath volcanoes, where it becomes enriched with sulfur, and forms liquid sulfide droplets.

The volcanic plumbing system then acts as a smelter. The sulfide liquid droplets scrub the nickel out of the magma. Ore deposits form when the sulphide droplets finally sink and accumulate at the bottom of the magma under the volcanoes. The nickel never reaches the surface - making it hard to explain how so much nickel got into the atmosphere.

A previous paper by our group showed that when liquid sulfide droplets and gas bubbles form together in the same magma they have a strong tendency to stick together. So, if there is a gas present, sulfide droplets can rise to the top of the magma chambers, taking the metals with them.

This x-ray image shows a sulfide blob and what remains of an attached gas bubble, frozen in ore. Iron concentration is represented from low to high by the colours black through to yellow/white. Data collected on the XFM beamline at the Australian Synchrotron, Victoria, Australia. Author provided.

In a big eruption, like the one that produced the Siberian lava, the pressure drops, and it’s like opening a bottle of champagne. A swarm of bubbles forms and floats to the top. The liquid sulfide droplets hitch a ride like baskets beneath hot air balloons.

We think that this “bubble riding" is how nickel got from the bottom of the Noril’sk magma all the way to the surface and into volcanic gases and aerosols.

During our recent studies of the Noril’sk nickel ores, we found the smoking gun: we used 2D and 3D X-ray imaging to show nickel-rich sulfide droplets physically attached to former gas bubbles, frozen in the ore.

We combined this observation with simple thermodynamic models to show that this transport mechanism greatly increases the amount of nickel content in volcanic aerosols.

The perils of methane

The Noril’sk nickel deposits are unique. They are the only known place where nickel had a direct path to the atmosphere. Explosive eruptions helped to release colossal amounts of gas into the air.

During these massive gas episodes, our sulfide-carrying champagne bubbles transported large amount of nickel and tipped it into the atmosphere to feed the blooming archaea, playing an important role in the Great Dying.

The Noril'sk ores formed in a freak event, but if the broader hypothesis is correct they hold a lesson for life on Earth: release large amounts of methane into the atmosphere at enormous peril.

Under normal circumstances, volcanic eruptions are a relatively minor source of methane in the atmosphere, but lethal time bombs exist in methane frozen into permafrost, much of it, coincidentally, to be found in the tundra wastelands covering the Siberian lava fields. Here, melting of the permafrost releases bubbles of methane into the atmosphere, creating a climate changing feedback loop - to potentially devastating effect.

Margaux Le Vaillant would like to acknowledge the contribution of Steve Barnes, James Mungall and Emma Mungall.

Margaux Le Vaillant, Research scientist - Geology - Mining exploration, CSIRO

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted. You can also comment using Facebook directly using he comment block below.




Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
Angst in America, Part 5: The Crisis We Can’t Muddle Through
Was Marx Right?
News Blog
Early Headlines: Asia Stocks Down, Dollar, Oil, And Gold All Up, Trump Will Pay ACA $, State Dept To Cut 9%, Trump Tax Plan, UK House Prices Drop, France GDP Growth Slows, And More
What Americans Shop For With Coupons Online
Fact Check: Are A Million African Migrants Already On Their Way To Europe?
Doctor Google Will See You Now
What We Read Today 27 April 2017
March 2017 Philly Fed Coincident Index Ticks Marginally Up
What Is 5G
April 2017 Kansas City Fed Manufacturing Remains Positive But Declines
March 2017 Pending Home Sales Seasonally Adjusted Index Declines
Durable Goods New Orders Improved in March 2017
22 April 2017 Initial Unemployment Claims Rolling Average Marginally Improves
Infographic Of The Day: These Are The Countries Most and Least Prepared For Cyber Attacks
Documentary Of The Week: History Of The World From The Beginning Of 'Time'
Investing Blog
Think Differently For Better Trading Results
Facebook Is Coming After Snapchat From All Sides
Opinion Blog
Trump's Tax Plan Is Brilliant Politics And Even Better Economics
Facts Are Not Always More Important Than Opinions: Here's Why
Precious Metals Blog
A New Age For Gold
Live Markets
27Apr2017 Market Close: Wall Street Closes In The Green With Nasdaq Grabbing The 'Golden Ring' Crossing 6,000, WTI Crude Climbs Back Into The 49 Handle, US Dollar Slips Off Session Highs
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government































 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2017 Econintersect LLC - all rights reserved