econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 08 March 2017

Scientists Create Electric Circuits Inside Plants

from The Conversation

-- this post authored by Stuart Thompson, University of Westminster

Plants power life on Earth. They are the original food source supplying energy to almost all living organisms and the basis of the fossil fuels that feed the power demands of the modern world. But burning the remnants of long-dead forests is changing the world in dangerous ways. Can we better harness the power of living plants today?

One way might be to turn plants into natural solar power stations that could convert sunlight into energy far more efficiently. To do this, we’d need a way of getting the energy out in the form of electricity. One company has found a way to harvest electrons deposited by plants into the soil beneath them. But new research from Finland looks at tapping plants’ energy directly by turning their internal structures into electric circuits.

Plants contain water-filled tubes called “xylem elements" that carry water from their roots to their leaves. The water flow also carries and distributes dissolved nutrients and other things such as chemical signals. The Finnish researchers, whose work is published in PNAS, developed a chemical that was fed into a rose cutting to form a solid material that could carry and store electricity.

Previous experiments have used a chemical called PEDOT to form conducting wires in the xylem, but it didn’t penetrate further into the plant. For the new research, they designed a molecule called ETE-S that forms similar electrical conductors but can also be carried wherever the stream of water travelling though the xylem goes.

This flow is driven by the attraction between water molecules. When water in a leaf evaporates, it pulls on the chain of molecules left behind, dragging water up through the plant all the way from the roots. You can see this for yourself by placing a plant cutting in food colouring and watching the colour move up through the xylem. The researchers’ method was so similar to the food colouring experiment that they could see where in the plant their electrical conductor had travelled to from its colour.

The result was a complex electronic network permeating the leaves and petals, surrounding their cells and replicating their pattern. The wires that formed conducted electricity up to a hundred times better than those made from PEDOT and could also store electrical energy in the same way as an electronic component called a capacitor.

Power plants. Pixabay

E-plants

How well these electrical networks formed surprised even their developers. This seems to be because when the roses were treated with ETE-S, they produced the same reactive chemicals that they use to kill invading microorganisms. These chemicals made the formation of the solid electrical conductor work much better inside the plant than when it was tested in the lab.

There are still challenges before this discovery can achieve its full potential. Perhaps most importantly, they need to find a way of getting ETE-S (or some further improved chemical) into intact, living plants. But the creation of “e-plants", that is plants with integrated electronic circuits, now looks much closer.

So how could e-plants be used? The most exciting possibility will be if we can combine e-plant electrical storage and circuitry with some way to directly tap photosynthetic energy, creating a literally green energy source.

But the technology could also help us better understand regular plants. Plants do not have a nervous system as animals do, but they do use electrical signals both to control individual cells and two carry messages between different parts of the plant. Perhaps the most spectacular example of this is in the Venus flytrap, in which the snapping mechanism is activated by an electrical impulse.

Building electrical circuits into plants will allow us to listen into these messages more easily. Perhaps when we understand their “language" better, we will then be able to send instructions to the plant. For example turning on its defence systems if we know that it is at risk of disease.

Perhaps we could create electronic plants that function like machines. If a crop could tell us if it has too little water or fertiliser, or is being attacked by insects, we could move resources to where they are most needed, improving farming efficiency. Maybe one day you could even use the technology to adjust a flower’s fragrance to match your mood.

Stuart Thompson, Senior Lecturer in Plant Biochemistry, University of Westminster

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted. You can also comment using Facebook directly using he comment block below.




Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
Slow Economic Growth Will Be Around For A Long Time
The Job Guarantee, Wage-Price Inflation And Alternative Solutions: Part 2
News Blog
U.S. Top Source Of DDoS Attacks In Q4 2016
How Artificial Intelligence And The Robotic Revolution Will Change The Workplace Of Tomorrow
Amazon's Alexa Is A Fast Learner
What We Read Today 26 March 2017
NASA's Plan To Use A Giant Magnet To Make Mars Habitable
Mexico Faces Cloudy 2017 Outlook, Recent Data Mixed
Money Market Funds And The New SEC Regulation
Life Cycle Hypothesis
How Tight Is The U.S. Labor Market?
Infographic Of The Day: President Trump's Budget Would Make Big Cuts To Agencies Which Focus On Science
Early Headlines: GW Will Increase Rainfall, New Ohio Law Inhibits Wind Farms, Break Up California?, EU C Emissions At 22-Yr Low, Mosul Offensive Suspended, And More
The Cynical Game
Earnings And Economic Reports: Week Starting 06 June 201627 March 2017
Investing Blog
Earnings: A Lot Less Than Meets The Eye
The Week Ahead: Does The Demise Of The Health Care Bill Mean Anything For Stocks?
Opinion Blog
Yellen's Dangerous Glass-Steagall Repression
Fade To Black
Precious Metals Blog
These Gold Stocks Will Produce Much Bigger Gains Than Gold Itself
Live Markets
24Mar2017 Market Close: Trumpcare Collapses But Little Affect On The Markets
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government































 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2017 Econintersect LLC - all rights reserved