econintersect .com

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.

posted on 22 January 2017

Why Hospitals Have Got It Wrong When It Comes To Antibiotic Resistance

from The Conversation

-- this post authored by Robert Beardmore, University of Exeter and Rafael Pena-Miller, Universidad Nacional Autónoma de México (UNAM)

As mathematicians, it came as a big surprise when we learned that mathematical models had predicted the way to stop antibiotic resistance was to give pills to patients almost at random. Doctors call this “antibiotic mixing". The theory goes that if you take a mix-things-up approach to antibiotic management, life threatening pathogens have to hit a fast moving target and won’t be able to evolve resistance very easily.

Several trials have tested this idea in the clinic, but there’s no evidence that it works. And our work shows why: antibiotic mixing is not the best thing to do, not even in theory. Treatments that personalise the patient do better.

It goes without saying that we’d like to preserve antibiotics for future generations. But it’s not clear that this is possible. After all, the microbes we treat are adept at evolving resistance. So what should doctors do to keep future generations safe from harmful infections that can cause terrible diseases like sepsis? Antibiotics are needed to treat sepsis and it kills more people than lung cancer each year in the UK.

Researchers have asked questions like this for many years. Finding new drugs is an important part of the solution but antibiotics are hard to find, expensive to develop and, even if we get them into the clinic, no antibiotic is evolution-proof. The drugs will, in all likelihood, eventually stop working.

Our only option is to use antibiotics wisely, or appropriately, as the UK’s chief medical officer (CMO) puts it. Meaning, we should only use the right drug for the right kind of infection, and even, if possible, avoid using them at all. After all, we know only too well that using the wrong antibiotics promotes resistance. Although the mere use of antibiotics promotes resistance, too.

Hope lies with another idea. We could try the antibiotic crop rotation strategy that uses different antibiotics depending on which month we’re in. This intervention is known as “antibiotic cycling". And yet, with more trials ongoing, there’s no evidence that this works any better than mixing. All in all, the data on what best to do amounts to millions of patient days of treatment, yet it is still patchy and uncertain.

Revisiting old simulations

To try and understand this uncertainty, we re-analysed the published mathematical models to understand why theory should provide such unusual predictions, particularly ones not borne out by clinical data. Our conclusion is this: mathematical models used as the basis of clinical trial design were overly reliant on computer simulations of rare situations that were unlikely to represent clinical cases. When our analysis accounted for this, it became clear that antibiotic cycling and mixing are not hugely different in terms of the levels of resistance that develops.

However, a difference does appear when ideas from personalised medicine are dropped into models and antibiotics are prescribed as appropriately as possible, just as the UK’s CMO recommends. A prediction from our mathematical study is that we need effective diagnostic devices capable of giving doctors rapid and reliable insight into the genetics and drug resistance profiles of the infectious microbes that are causing the patient difficulties.

This common sense conclusion forms part of the recommendations that the panels convened by economist Jim O'Neill recently presented to the UK government.

Lots of researchers globally, from molecular biologists to medicinal chemists to computer scientists, are working on the problem of personalising antibiotic treatment. So it is helpful that the theory and practise of antibiotic stewardship may be converging onto a common solution after, give or take, three decades of research effort.

The ConversationRobert Beardmore, Professor, University of Exeter and Rafael Pena-Miller, Assistant Professor, Universidad Nacional Autónoma de México (UNAM)

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing

Make a Comment

Econintersect wants your comments, data and opinion on the articles posted. You can also comment using Facebook directly using he comment block below.

Econintersect Contributors

Print this page or create a PDF file of this page
Print Friendly and PDF

The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.

Keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Middle East / Africa
USA Government

 navigate econintersect .com


Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day


Asia / Pacific
Middle East / Africa
USA Government

RSS Feeds / Social Media

Combined Econintersect Feed

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution



  Top Economics Site Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2018 Econintersect LLC - all rights reserved