econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 13 November 2016

We've Found A New Family Of Stars In The Milky Way That Could Help Us Work Out How Galaxies Formed

from The Conversation

-- this post authored by Ricardo Schiavon, Liverpool John Moores University

One of the most fundamental questions in modern astrophysics is how galaxies first formed. The Milky Way, the galaxy we live in, is an amalgamation of about 100 billion stars, gas, dust and enigmatic dark matter - all held together by gravity. The Milky Way itself is but one of many hundreds of billions of galaxies in the observable universe, with a wide range of sizes, masses, shapes and colours.

We are just beginning to understand how such different kinds of galaxies could arise and evolve. But the picture is blurry. For example, cosmological models of galaxy formation haven’t been able to establish exactly where the stars we see today were first born. Figuring out how galaxies came to be is hugely important. Without them, there would be no stars - and therefore no life in the universe.

Now we have made a discovery, published online in the Monthly Notices of the Royal Astronomical Society, that sheds new light on how galaxies and stars within them form.

Enigmatic globular clusters

Astronomers know that some of the Milky Way’s stars were born in the galaxy itself, whereas others were formed in smaller galaxies that the Milky Way eventually engulfed. But it is unclear which process is most common.

Infant stars are born in large groups - never in isolation. Some of these groups, called clusters, are still around today. They roughly come in two types: young, low-mass clusters that live in the Milky Way disk, and massive, old “globular clusters" which are located in the “stellar halo" of the Milky Way (a very large, thin, diaphanous structure) which envelops the disk of the Milky Way. Globular clusters contain a tiny fraction of all Milky Way stars, but astronomers suspect that they hold important clues to the early stages of how the galaxy formed.

Image of the disk and halo of the Milky Way by COBE in infrared. NASA

But we don’t really know how globular clusters formed either. Current models propose that most globular clusters formed in giant molecular clouds within turbulent disks in the early universe. They suggest that globular clusters host multiple generations of stars - stars born from material of other stars, some of which are now dead. However, these models cannot reproduce in detail what we actually observe in globular clusters.

What we know is that the universe only assembled the conditions to form lots of globular clusters in its youth. Ironically, these turbulent disks were also hostile to globular clusters - it is thought that most of them were wiped out by collisions with giant molecular clouds shortly after being born. Those that survived (there are about 150 in the Milky Way) may have lost a substantial fraction of their stars, perhaps even most of them. But if that’s the case, then there should be plenty of stars originally formed in globular clusters now residing in other parts of the galaxy.

The answer could be written in the stars themselves. Their locations, velocities and chemical compositions may hold clues to whether these stars were formed in the Milky Way or elsewhere. All the chemical elements in the universe, except for hydrogen, helium, and tiny amounts of lithium, were synthesised entirely in the interior of stars. When stars die, they shed their nucleosynthetic byproducts into the interstellar medium, out of which new stars are born. Thus, a stars’s chemical composition bears the signature of the evolution of its predecessors. So if we can work that out, it may be possible to establish a star’s origin.

The galaxy has many many stars, though, so to obtain meaningful answers, one needs very large samples. Thanks to recent technological developments, huge surveys currently collect data for hundreds of thousands to millions of Milky Way stars. One of them is the Apache Point Observatory Galactic Evolution Experiment (APOGEE). It stands out from the crowd because of its focus on infrared spectroscopy - a lower frequency of light than that we can see - as opposed to all other surveys that concentrate in the visible part of the spectrum.

This is important because of all the dust in the disk of the Milky Way. Dust is a lot less opaque in the infrared, so APOGEE can see through the dust into the inner regions of the Milky Way much better than optical surveys. This enabled us to estimate the abundances of some key elements for thousands of stars for the first time. We were also able to detect trace stellar families that would otherwise pass unnoticed amid a crowd of ordinary stars.

Peculiar stars

In this way, we discovered a population of stars with unusual chemical compositions, very enriched in nitrogen. This is interesting because it is typical of globular cluster stars. The properties of these new stars differ from those of existing globular clusters, suggesting that they were associated with clusters that no longer exist. The logical implication is that there once existed a very large population of globular clusters in the early Milky Way, which was almost entirely destroyed. Moreover, the properties of the new stars suggest that they are associated with the halo of the Milky Way, not its disk. That being the case, destroyed globular clusters may be the stuff that at least a quarter of the halo is made of.

The Messier 80 globular cluster in the constellation Scorpius. NASA

If confirmed, this result will challenge models of galaxy formation. For instance, APOGEE’s result can constrain which fraction of the halo was formed in the galaxy. It also forces us to revise models of globular cluster formation, which have a hard time explaining the amount of nitrogen that we observe in these stars.

But perhaps a more far-reaching implication is that we might discover that globular clusters are in fact one of the the most typical star-forming units in the universe. In the past two decades, research has made it possible to estimate the mean chemical composition of stars in the cores of distant, unresolved elliptical galaxies, which are thought to be formed in similar ways to the Milky Way halo. Interestingly, this has shown that stars in those galaxies tend to be enriched in nitrogen and sodium, which is precisely what is found in globular clusters.

Indeed, globular clusters may have contributed substantially to the stellar budget of all galaxies in the universe - something we didn’t know before. This is a riveting prospect which could even come to change our understanding of how galaxies came about, including our own Milky Way.

The ConversationRicardo Schiavon, Reader in Astrophysics, Liverpool John Moores University

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
Big Mess in Italy
Are You Feeling the Economic Surge?
News Blog
December 5, 2016 Weather and Climate Report - December Update - Zonal Prevails
Irish Births And Baptisms Visualised
What Happens In The Smartphone Afterlife
Water Intoxication: Are We Drowning In Advice To Drink More Fluids?
The Worldwide Virtual Reality Market Is Set To Be Huge
Average Gasoline Prices for Week Ending 05 December 2016 Rose Over 5 Cents
What We Read Today 05 December 2016
Why We Have Different Blood Types
November 2016 Conference Board Employment Index Improved.
November 2016 ISM and Markit Services Index Mixed
Are All Collateralized Loan Obligations Equal?
A Third Of Homes Sold For The List Price Or More In August 2016
It Is Still Not Too Late To Find A Seasonal Job
Investing Blog
Momentum Issues A Warning
The Great Bond Crash Of 2016: 05 December Update
Opinion Blog
The Shale-War Is Over
Fake Science
Precious Metals Blog
Silver Prices Rebounded Today: Where They Are Headed
Live Markets
05Dec2016 Market Close: US Markets Close Higher, WTI Crude Settles At $51.09, US Dollar Drops Below 100 Temporally
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government



Crowdfunding ....






























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved