econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 26 July 2016

Study Tracing Ancestor Microorganisms Suggests Life Started In A Hydrothermal Environment

from The Conversation

-- this post authored by Jeff Errington, Newcastle University

It's one of the greatest mysteries of modern science: how did life begin exactly? While most scientists believe that all lifeforms evolved from a common, primitive ancestor microorganism, the details are blurry. What kinds of genes did this lifeform carry and where did it live? A new study, published in Nature Microbiology, now sheds some light on this early organism and the environment it evolved in.

Experimental scientists interested in the origins of life generally tackle the problem in two distinct ways. One is a bottom-up approach in which they try to imagine how early life might have emerged and then try to recreate the key steps in the laboratory. The alternative, a top-down approach, is to analyse or strip down modern cells to simplify them and deduce how the key stages in the evolution of complexity might have taken place.

Informaticians interested in this problem exploit the huge amounts of data emerging from the revolution in DNA sequencing. This has resulted in a sea of information about the genomes of organisms - from bacteria to humans. Hidden in this should be the echoes of DNA sequences from primitive cells - the first cells on the planet to use the modern genetic code - passed on through billions of generations.

The "last universal common ancestor" is a hypothetical very early single cell from which all life on Earth descended. The relationship between this ancestor and modern organisms is often visualised in the form of evolutionary trees, of which the most famous early examples were those by Charles Darwin.

The advent of DNA sequencing provided a wonderful, highly quantitative measure of genetic relatedness that transcended the whole of biology. The same four-base code of A, C, G and T is used by virtually all organisms on the planet. So in principle, it can be used to construct evolutionary trees for the whole of life. We know that certain genes, such as the one encoding a small RNA subunit of the ribosome (the protein synthesisers of a cell), existed at the dawn of cellular life on Earth and seem to have been inherited by all subsequent forms of life. Over four billion years, copies of this particular gene - 16S rRNA - have gradually changed by random mutation in the separate lineages that have led to different forms of life. This means each has a characteristic sequence that is similar in recently diverged organisms but increasingly different in lineages that diverged earlier in evolution.

The first analyses of these "universal" DNA sequences about 30 years ago led to dramatic changes in our appreciation of the diversity of life on Earth, and especially the staggering degree of diversity in single celled organisms with no nucleus (the prokaryotes). It also highlighted the existence of a huge new "domain" of prokarytic life - now called the archaea.

A speculatively rooted tree for rRNA genes, showing the three life domains Bacteria, Archaea, and Eucaryota, and linking the three branches of living organisms to the last universal common ancestor (the black trunk at the bottom of the tree). Note that the most modern models now place the origin of the eukaryotes within the archaeal lineage. wikimedia, CC BY-SA

Attempts to develop truly universal trees that would define how all modern cells descended from this last universal ancestor have been thwarted by a number of technical issues. One problem lies in the sheer number of groups that have separated from each other since life first began. What's more, bacteria can also exchange genes with each other, which makes it harder to identify how they've been passed down.

Hydrogen-powered organism?

The researchers behind the new study applied a sophisticated state-of-the-art method to organise some 6m sequenced prokaryotic genes into families. They then looked for patterns of similarity across all bacterial groups and found a small set of genes that were present in both archaea and bacteria. They could show that these genes were really likely to have been inherited directly from a common ancestor rather than by lateral exchange along the way.

Scanning electron micrograph of Clostridium difficile bacteria from a stool sample. CDC/ Lois S. Wiggs/wikimedia

The result is important because it identifies specific groups of bacteria (clostridia) and archaea (methanogens) that carry early versions of these genes, meaning they are very ancient and may be similar to the very earliest organisms that gave rise to the separate bacterial and archaeal lineages.

More importantly, the nature of the genes that are conserved tells an amazing story about the kind of environment in which this last common ancestor lived - including how it extracted energy to survive and thrive. The study suggests that the world inhabited by these organisms nearly four billion years ago was very different to the one we live in now. There was no available oxygen, but according to the genes, this common ancestor probably obtained energy from hydrogen gas, presumably made by geochemical activity in the Earth's crust. "Inert" gases including carbon dioxide and nitrogen would have provided the key building blocks for making all cellular structures. Iron was freely available, with no oxygen to turn it into insoluble rust, and so this element was used by many enzymes in the early cell. Some of the genes are believed to be involved in adaptation to high temperatures, which suggests these organisms evolved in a hydrothermal environment - perhaps equivalent to modern hydrothermal vents or hot springs, where some bacteria still thrive.

Sadly, without a time machine, there is no way to directly verify these results. Nevertheless, this information will now be of great interest, not least to those scientists wishing to use the information to inform their bottom-up experiments in recreating modern forms of primitive life. But it will not be easy, given the requirement for high temperature, nitrogen, carbon dioxide and explosive hydrogen gas.

The ConversationJeff Errington, Director of the Centre for Bacterial Cell Biology, Newcastle University

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
The Surprising Pevalence of Surprises in Export Specialisation
The Destruction of the Existing Workforce
News Blog
Documentary Of The Week: China's Wealth, Collapse, And Environmental Nightmare
Where Trump Stands On Twitter
Is This Really The Final Word On Whether Calorie-restricted Diets Make You Live Longer?
Electric Mobility Has A Long Way To Go
Average Gasoline Prices for Week Ending 23 January 2017 Fell Over 3 cents
What We Read Today 23 January 2017
Badass Grandpa Tokyo Drift!
Hurricane Matthew Clocks Top Wind Speed For 2016 At 101 MPH
Consumer Debt Growth May Have Stalled In Q3
Measuring Americans' Expectations Following The 2016 Election
Infographic Of The Day: Seven Negotiation Techniques
Early Headlines: Asia Stocks Mixed, Europe Lower, Oil And Dollar Down, US Oil Production Climbs, EM Bonds Pain Coming, No Trump Tax Returns, Syria Peace Talks Without US And More
Most Read Articles Last Week Ending 21 January
Investing Blog
Netflix And Co. Surpass DVD And Blu-ray Sales
The Future Of Online Sales
Opinion Blog
Bill Maher 2017 Season Premier
Trumping World Trade
Precious Metals Blog
A Slow Start For The Week Would Be Constructive For Gold
Live Markets
23Jan2017 Market Close: Wall Street Down, But Pares Morning Losses By The Closing Bell, Crude Rises Back To Normalcy And The US Dollar Nears Slipping Below 100
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government































 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2017 Econintersect LLC - all rights reserved