econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 05 May 2016

A New State Of Matter: Quantum Spin Liquids Explained

from The Conversation

-- this post authored by Lucy Clark, University of St Andrews

Magnetism is one of the oldest recognised material properties. Known since antiquity, records from the 3rd century BC describe how lodestone, a naturally occurring magnetised ore of iron, was used in primitive magnetic compasses. Today, thanks to the theory of quantum mechanics we now understand the nature of magnetism, too, with the concept of spin explaining the behaviour of elementary particles such as electrons in the material that make it magnetic.

Spin, a property of sub-atomic particles such as electrons and quarks, makes each individual electron behave as if it were a tiny magnetic compass needle. The millions or billions of electron spins in a piece of material interact with each other in various ways and stabilise to form the different possible magnetic states found in solid matter. Taken together in such large numbers, the spin of the material's electrons grants the same magnetic properties to the material itself.

Magnetism is essential for the basic trappings of modernity: magnetic materials form the basis of modern electronics and information storage. With this in mind, scientists have pursued the discovery of materials with entirely new magnetic behaviours or new states of matter with unprecedented and potentially beneficial properties.

One is that of a quantum spin liquid, first proposed by the Nobel Prize-winning theoretical physicist PW Anderson in the early 1970s. In a paper published in the journal Nature Materials, a research team led by Professor Stephen Nagler at the Oak Ridge National Laboratory in the US has demonstrated the quantum spin liquid nature of the magnetic material ruthenium trichloride (α-RuCl₃).

How do quantum spin liquids form?

Quantum spin liquids are frequently found in a class of materials known as frustrated magnets. In a conventional magnet, the interactions between spins result in stable formations, known as their long-range order, in which the magnetic directions of each individual electron is aligned.

In a frustrated magnet, the arrangement of electron spins prevents them from forming an ordered alignment, and so they collapse into a fluctuating, liquid-like state. In a true quantum spin liquid, the electron spins never align, and continue to fluctuate even at the very lowest temperatures of absolute zero, at which the spins in other magnetic states of matter would have already frozen.

Herbertsmithite, a candidate quantum spin liquid source.

Rob Lavinsky/iRocks.com, CC BY-SA

The conditions required for a quantum spin liquid to form are often found in nature. The most famous example is the copper-based mineral Herbertsmithite, for which there is significant evidence to suggest that a quantum spin liquid state exists within the frustrated magnetic layers of copper ions that make up its structure.

Where do we find quantum spin liquids?

A challenge for scientists is to recreate the conditions required to synthetically grow candidate quantum spin liquid materials in the laboratory to allow for a complete understanding of their properties.

Quantum spin liquids' evasive character make it notoriously difficult to confirm their existence and pinpoint their exact nature. The presence of a quantum spin liquid can be inferred from a lack of alignment of electron spins, but definitive confirmation is tricky: absence of evidence is not evidence of absence, as the adage goes. A more sophisticated approach is to uncover the more distinctive and unique characteristics of the quantum spin liquid to allow for a positive confirmation.

This is why Nagler's study is particularly noteworthy. In experiments using neutron spectroscopy, the team revealed that α-RuCl₃ realises something extremely close to a special flavour of quantum spin liquid called a Kitaev spin liquid. A prerequisite for this particular quantum spin liquid state is that the spins of the magnetic ruthenium ions form a frustrated honeycomb network: a layered, two-dimensional hexagonal structure, similar to that assumed by carbon atoms in graphite.

In their experiment, a beam of neutron particles created by a particle accelerator was scattered from the sample of α-RuCl₃ transferring energy between the neutrons and the sample in the process. This energy transfer was quantified by a set of detectors surrounding the sample, and the response observed fits that described by the theory developed for the Kitaev quantum spin liquid in particular.

What can we do with quantum spin liquids?

We now recognise that the quantum spin liquid comes in several different varieties with subtly different properties, but that they all share the ability to support peculiar quantum mechanical phenomena. This is exciting, and not just from a purely scientific perspective: these states could be used in the development of quantum computers and other transformative quantum technologies that are expected to provide revolutionary changes to how we process and store data throughout the 21st century.

In the age of quantum computing, we will be able to perform calculations that are currently unsolvable on even the most powerful supercomputers of today. This will allow for breakthroughs in a vast array of fields in which we are tackling some of the biggest challenges of our time, from drug discovery to the design of smarter materials for a whole host of applications. As we discover more candidate quantum state liquid materials and better understand their behaviour, we will unravel ever more exotic physics and discover ways to manipulate and control this novel state of matter to our advantage.

The ConversationLucy Clark, Research Fellow, University of St Andrews

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
The Expected Effects of Petitions to Improve the Monetary System
Energy and Falling Productivity
News Blog
U.S. Real Wage Growth: Fast Out Of The Starting Blocks - Part 1 Of 2
Who Works More Hours Per Week: Rich Or Poor Countries?
Infographic Of The Day: How The World's Most Iconic Logos Evolve Over Time
Early Headlines: Asia Stocks Down, Fed Wants Banks' Commodity Limits, Treasuries Being Sold, EZ Business Output Softens, France Contraction, Saudi's Boost Banks, Canada Tightens Borders For Chinese And More
Most Read Articles Last Week Ending 24 September
How Britain Owes Its Immigrants A Debt Of Gratitude
Super Mario, The Timeless Bestseller
Explainer: The Nine Swing States That Will Decide The Next US President
How Long Does Apple Support Older IPhone Models
What We Read Today 25 September 2016
Dangerous Ultra Pure Water
Job Employment Tenure Down
Mobile Payments Promise To Improve Financial Accessibility In Mexico
Investing Blog
Monday Morning Call 26 September
We're Back Here We Started
Opinion Blog
Heading For A Fall? With Summer Over, Europe Must Face Up To Its Mounting Crises
What If We're In A Depression But Don't Know It?
Precious Metals Blog
War On Cash Turns To $20, $50, And $100 Bills
Live Markets
26Sep2016 Pre-Market Commentary: Wall Street Fractionally Lower, Volatility Expected In The Crude Markets Later This Week, First Presidential Debate Tonight
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government



Crowdfunding ....






























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved