FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.

posted on 08 March 2016

Who Or What Is Behind The Wheel? The Regulatory Challenges Of Driverless Cars

from The Conversation

-- this post authored by Hussein Dia, Swinburne University of Technology

A legal opinion by the US National Highway Traffic Safety Administration (NHTSA) set the internet alight in February.

The US road safety federal regulator informed Google that the artificial intelligence (AI) software it uses to control its self-driving cars could effectively be viewed as the "driver" for some (but not all) regulatory purposes.

The NHTSA's letter was in response to a request from Google seeking the NHTSA's interpretations of the US Federal Motor Vehicle Safety Standards.

It was widely viewed in the media as a recognition from the Feds that Google's AI software, the self-driving system (SDS), is legally the same as a human driver. The details of the letter, however, tell a very different story.

First, the letter strictly stated the term "could be" equivalent to a human driver, meaning this definition is yet to be settled.

The NHTSA's letter also suggested that suitable tests would need to be developed to allow the NHTSA to certify the SDS compliance with road safety legislation.

And therein lies the challenge. What procedure can be used to verify compliance? Should the AI self-driving software pass a benchmark test, developed specifically for autonomous vehicles, before it can be recognised as a legal driver? Who should develop such a test and what should it include?

Driving the future

Make no mistake, car manufacturers and technology companies are working towards a vision of fully autonomous vehicles, and that vision includes taking the human driver out of the loop. They have already made huge advancements in this space.

The self-driving software that has been developed, based on "deep neural networks", includes millions of virtual neurons that mimic the brain. The on-board computers have impressive supercomputing power packed inside hardware the size of a lunchbox.

The neural nets do not include any explicit programming to detect objects in the world. Rather, they are trained to recognise and classify objects using millions of images and examples from data sets representing real-world driving situations.

But the driving task is much more complex than object detection, and detection is not the same as understanding. For example, if a human is driving down a suburban street and sees a soccer ball roll out in front of the car, the driver would probably stop immediately since a child might be close behind.

Even with advanced AI, would a self-driving vehicle know how to react? What about those situations where an accident is unavoidable? Should the car minimise the loss of life, even if it means sacrificing the occupants, or should it protect the occupants at all costs? Should it be given the choice to select between these extremes?

These are not routine instances. Therefore, lacking a large set of examples, they would be relatively resistant to deep learning training. How can such situations be included in a benchmark test?

The Google prototype driverless car faces regulatory hurdles before it can get on the road. Google

Turing tests

The question of whether a machine could "think" has been an active area of research since the 1950s, when Alan Turing first proposed his eponymous test.

The basis of the Turing Test is that a human interrogator is asked to distinguish which of two chat-room participants is a computer, and which is a real human. If the interrogator cannot distinguish computer from human, then the computer is considered to have passed the test.

The Turing Test has many limitations and is now considered obsolete.

But a group of researchers have come up with a similar test based on machine vision, which is more suited to today's AI evaluations.

The researchers have proposed a framework for a Visual Turing Test, in which computers would answer increasingly complex questions about a scene.

The test calls for human test-designers to develop a list of certain attributes that a picture might have. Images would first be hand-scored by humans on given criteria, and a computer vision system would then be shown the same picture, without the "answers," to determine if it was able to pick out what the humans had spotted.

Some of the questions posed in a Visual Turing Test. Wikimedia Commons, CC BY-SA

There are a few vision benchmark data sets used today to test the performance of neural nets in terms of detection and classification accuracy.

The KITTI data set, for example, has been extensively used as a benchmark for self-driving object detection. Baidu, the dominant search engine company in China, and which is also a leader in self-driving software, is reported to have achieved the best detection score of 90% on this data set.

At the Consumer Electronics Show earlier this year, NVIDIA demonstrated the performance of its self-driving software on new data sets from Daimler and Audi.

The demonstrations showed advanced levels for single and multi-class detection and segmentation, in which the software was able to extract more information from video images.

The Daimler data set used to test driverless cars. NVIDIA

A different data set from Audi. NVIDIA

A modified Visual Turing Test can potentially be used to test the self-driving software if it's tailored to the multi-sensor inputs available to the car's computer, and is made relevant to the challenges of driving.

But putting together such a test would not be easy. This is further complicated by the ethical questions surrounding self-driving cars. There are also challenges in managing the interface between driver and computer when an acceptable response requires broader knowledge of the world.

Policy remains the last major hurdle to putting driverless cars on the road. Whether the final benchmark bears any resemblance to a Turing-like test, or something else we have not yet imagined, remains to be seen.

As with other fast-moving innovations, policymakers and regulators are struggling to keep pace. Regulators need to engage the public and create a testing and legal framework to verify compliance. They also need to ensure that it is flexible but robust.

Without this, a human will always need to be in the driver's seat and fully autonomous vehicles would go nowhere fast.

The ConversationHussein Dia, Associate professor, Swinburne University of Technology

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing

Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.

You can also comment using Facebook directly using he comment block below.

Econintersect Contributors


Print this page or create a PDF file of this page
Print Friendly and PDF

The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.

Take a look at what is going on inside of
Main Home
Analysis Blog
A Short Note on a Connection Between Marginalist Economics and Folk Medicine
Run A High Pressure Economy? Janet Yellen Does Not Understand the Problem
News Blog
Early Headlines: Asia Stocks Down, Oil Lower, Great Lakes Wind Power, Chinese Moving Mfg To US, Tesla Reports Profit, Dems Forecast To Take Senate, China's Debt And More
How Miller Stacks Up Against His Draft Class
Inside The Machine: How Two Nobel Winners Taught Us How Companies Tick
Healthcare's Dirty Little Secret: Results From Many Clinical Trials Are Unreliable
The Cleveland Indian's Unique Use Of Andrew Miller
What We Read Today 26 October 2016
Why Do So Many Price Tags End In .99
September 2016 New Home Sales Improve.
Higher GDP Growth In The Long Run Requires Higher Productivity Growth
Quantum Encryption Is Secure Because Information Encoded In A Quantum Particle Is Destroyed As Soon As It Is Measured
The Stock Market Is Up, But Mutual Fund Investors Are Fleeing
Infographic Of The Day: Google's Hidden Games
Early Headlines: Asia Srocks Mostly Lower, Energy HY Bonds Surge, Google Fiber Cutback, Shadow Banks Dominate Mortgages, NATO Crowds Russia, Coffee Surges And More
Investing Blog
Thirsty For Income? How To Thrive In This Yield Desert
Apple's First Annual Sales Decline In 15 Years
Opinion Blog
A Hard Brexit And Reduced Migration Won't Benefit UK Workers
What Triggers Collapse?
Precious Metals Blog
Inflation Surging As Platinum Signals Stock Market Decline
Live Markets
26Oct2016 Market Close: US Markets Close Lower, Boeing Shares Up, Texas Tea Stabilizes In Low 49's, Gold Falls To 1266, Friday's Fed Rate Change Promises To Be A Game Changer
Amazon Books & More

.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Middle East / Africa
USA Government

Crowdfunding ....



Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day


Asia / Pacific
Middle East / Africa
USA Government

RSS Feeds / Social Media

Combined Econintersect Feed

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution



  Top Economics Site Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved