econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 28 February 2016

What Is Time And Why Does It Move Forward?

from The Conversation

-- this post authored by Thomas Kitching, University College London

Imagine time running backwards. People would grow younger instead of older and, after a long life of gradual rejuvenation - unlearning everything they know - they would end as a twinkle in their parents' eyes. That's time as represented in a novel by science fiction writer Philip K Dick but, surprisingly, time's direction is also an issue that cosmologists are grappling with.

While we take for granted that time has a given direction, physicists don't: most natural laws are "time reversible" which means they would work just as well if time was defined as running backwards. So why does time always move forward? And will it always do so?

Does time have a beginning?

Any universal concept of time must ultimately be based on the evolution of the cosmos itself. When you look up at the universe you're seeing events that happened in the past - it takes light time to reach us. In fact, even the simplest observation can help us understand cosmological time: for example the fact that the night sky is dark. If the universe had an infinite past and was infinite in extent, the night sky would be completely bright - filled with the light from an infinite number of stars in a cosmos that had always existed.

For a long time scientists, including Albert Einstein, thought that the universe was static and infinite. Observations have since shown that it is in fact expanding, and at an accelerating rate. This means that it must have originated from a more compact state that we call the Big Bang, implying that time does have a beginning. In fact, if we look for light that is old enough we can even see the relic radiation from Big Bang - the cosmic microwave background. Realising this was a first step in determining the age of the universe (see below).

But there is a snag, Einstein's special theory of relativity, shows that time is ... relative: the faster you move relative to me, the slower time will pass for you relative to my perception of time. So in our universe of expanding galaxies, spinning stars and swirling planets, experiences of time vary: everything's past, present and future is relative.

So is there a universal time that we could all agree on?

The universe's timeline. Design Alex Mittelmann, Coldcreation/wikimedia, CC BY-SA

It turns out that because the universe is on average the same everywhere, and on average looks the same in every direction, there does exist a "cosmic time". To measure it, all we have to do is measure the properties of the cosmic microwave background. Cosmologists have used this to determine the age of the universe; its cosmic age. It turns out that the universe is 13.799 billion years old.

Time's arrow

So we know time most likely started during the Big Bang. But there is one nagging question that remains: what exactly is time?

To unpack this question, we have to look at the basic properties of space and time. In the dimension of space, you can move forwards and backwards; commuters experience this everyday. But time is different, it has a direction, you always move forward, never in reverse. So why is the dimension of time irreversible? This is one of the major unsolved problems in physics.

To explain why time itself is irreversible, we need to find processes in nature that are also irreversible. One of the few such concepts in physics (and life!) is that things tend to become less "tidy" as time passes. We describe this using a physical property called entropy that encodes how ordered something is.

Imagine a box of gas in which all the particles were initially placed in one corner (an ordered state). Over time they would naturally seek to fill the entire box (a disordered state) - and to put the particles back into an ordered state would require energy. This is irreversible. It's like cracking an egg to make an omelette - once it spreads out and fills the frying pan, it will never go back to being egg-shaped. It's the same with the universe: as it evolves, the overall entropy increases.

Unfortunately that's not going to clean up itself. Alex Dinovitser/wikimedia, CC BY-SA

It turns out entropy is a pretty good way to explain time's arrow. And while it may seem like the universe is becoming more ordered rather than less - going from a wild sea of relatively uniformly spread out hot gas in its early stages to stars, planets, humans and articles about time - it's nevertheless possible that it is increasing in disorder. That's because the gravity associated with large masses may be pulling matter into seemingly ordered states - with the increase in disorder that we think must have taken place being somehow hidden away in the gravitational fields. So disorder could be increasing even though we don't see it.

But given nature's tendency to prefer disorder, why did the universe start off in such an ordered state in the first place? This is still considered a mystery. Some researchers argue that the Big Bang may not even have been the beginning, there may in fact be "parallel universes" where time runs in different directions.

Will time end?

Time had a beginning but whether it will have an end depends on the nature of the dark energy that is causing it to expand at an accelerating rate. The rate of this expansion may eventually tear the universe apart, forcing it to end in a Big Rip; alternatively dark energy may decay, reversing the Big Bang and ending the Universe in a Big Crunch; or the Universe may simply expand forever.

But would any of these future scenarios end time? Well, according to the strange rules of quantum mechanics, tiny random particles can momentarily pop out of a vacuum - something seen constantly in particle physics experiments. Some have argued that dark energy could cause such "quantum fluctuations" giving rise to a new Big Bang, ending our time line and starting a new one. While this is extremely speculative and highly unlikely, what we do know is that only when we understand dark energy will we know the fate of the universe.

So what is the most likely outcome? Only time will tell.

The ConversationThomas Kitching, Lecturer in Astrophysics, UCL

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
The Theory of the Monetary Circuit: A Critique
The Expected Effects of Petitions to Improve the Monetary System
News Blog
Infographic Of The Day: Dubai Interesting Statistics And Facts
Early Headlines: Asia Stocks Up, Oil Surges, OPEC Cuts Production, Student Loan Woes Mount, Trump Still Close, Aleppo Hospitals Bombed, Huge Wind Storm In Oz And More
The World's Most Sustainable Cities
Big Sam In Bad Company
Other Ways To Spend Your AirPod Budget
Crashing Space Station Shows Why China Must Start To Collaborate In Orbit
NFL Edges Towards A Full House In London
What We Read Today 28 September 2016
October 2016 Economic Forecast: Outlook Insignificantly Declines But Little Economic Strength Entering 4Q2016
1 Minute. 34 Seconds. In The U.S., That's All It Takes To Register To Vote. A Single Registration Lasts A Lifetime Of Elections. We've Made It Easy For You Here: Http://g.co/elections/134
Durable Goods New Orders Unchanged in August 2016
90% Rally In Sugar Prices Since Late 2015
U.S. Real Wage Growth: Slowing Down With Age - Part 2 Of 2
Investing Blog
Will Deutsche Bank Survive?
Banks Of Absurdity
Opinion Blog
The Federal Reserve Note
Trump, Trade And Taxes
Precious Metals Blog
War On Cash Turns To $20, $50, And $100 Bills
Live Markets
28Sep2016 Market Close: Wall Street Closes Higher After A Sluggish Start In The Morning, Crude Prices Close Higher In Face Of GS Saying Crude Will Fall, Indicators Neutral
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government



Crowdfunding ....






























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved