econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 18 November 2015

Explainer: What Is Interplanetary Dust And Can It Spread The Ingredients Of Life?

from The Conversation

-- this post authored by Christian Schroeder, University of Stirling

NASA recently reported that a cloud of dust was surrounding Mars high above its atmosphere. The authors of the study ruled out Mars itself and its moons Phobos and Deimos as the sources of the dust and concluded that it must come from a larger dust cloud floating around between the planets in our solar system.

This "interplanetary dust" is hugely important. It is thought to have played a crucial role in the formation and evolution of our solar system. What's more, it may even have provided our planet with water - and kick-started life.

Ashes to ashes, dust to dust

We all know how quickly empty spaces fill with dust and, figuratively speaking, the cosmos is no different. Cosmic dust is made up of tiny mineral grains in the nano and micrometer size range (one billionth and one millionth of a metre, respectively). Cosmic dust particles find themselves between the end of one star's lifetime and at the beginning of the formation of a new solar system.

Interplanetary dust particle. Amara/wikipedia, CC BY-SA

A star forms from the collapse of a gas cloud made up of hydrogen and helium, elements that were created in the aftermath of the Big Bang. Stars use this hydrogen as fuel, creating heavier elements such as carbon and oxygen and up to the element iron through nuclear fusion processes. These new elements are released at the end of a star's lifetime, when it collapses under its own gravity and explodes as a supernova. The high energies of such an explosion create additional elements heavier than iron. Some of the heavier elements, metals such as silicon and iron, combine with oxygen to form minerals - which is exactly what dust is.

Our solar system formed from the collapse of a hydrogen and helium gas cloud mixed with dust, otherwise there would not be any rocky planets like Earth and Mars. The fact that Earth contains such heavy elements as gold, lead, or uranium (all heavier than iron) shows that our sun is a third or higher-generation star, preceded by at least one supernova explosion of another nearby star.

Interstellar dust particles, which predate our own solar system, can provide insight into the processes at the end of the lifetime of ancient stars. The interplanetary dust in the inner solar system contains some interstellar dust particles. But the vast majority of interplanetary dust particles in our solar system are released from comets as they approach the sun or from the collision of asteroids in the asteroid belt. They therefore contain clues about the makeup and formation of such "proto-planets", which are seen as the first steps of planet formation from the huge dust and gas cloud surrounding a new star.

There's plenty of interstellar dust in the Carina Nebula. ASA, ESA, and M. Livio, The Hubble heritage and the Hubble 20th anniversary teams.

The dust cloud in our solar system gradually moves towards the sun whose gravitational pull acts like a giant vacuum cleaner. On their way, some of the dust particles collide with Mars and Earth. The dust is responsible for the Zodiac light that can be seen after sunset in spring or before sunrise in autumn.

Dust as an origin of life?

Any cosmic dust mineral grain offers a surface for gases, ice or organic matter to stick to. Complex molecules of organic matter as the basic building blocks for life have been documented in intergalactic dust clouds, comets and meteorites.

Understanding the distribution and amount of dust is important because dust could have delivered significant amounts of water and organic matter to the planets in the inner solar system, in particular Earth and Mars. While many researchers think that asteroid and comet impacts may be behind the water and life on Earth, several studies have indicated that dust itself can deliver water and organic matter simultaneously and might have jump-started life. This process would work universally, also on exoplanets in distant solar systems.

So if the dust did jump start life on Earth it is plausible that it could have done so on Mars as well. However, Earth's magnetic field has protected our atmosphere and water against being destroyed by the solar wind - we get just the right amount of it. Mars has not had a magnetic field for most of its lifetime, and its atmosphere and water have subsequently been lost to space. Without water, organic matter molecules cannot be assembled into the very complex molecules, like DNA and proteins, that make up life. Lack of a thick atmospheric layer also means lack of protection against destruction of organic molecules by UV light and other harmful forms of cosmic radiation. While the jury is still out on whether there was ever life on Mars, it is extremely unlikely that dust could jump start life on Mars today, despite hovering above its atmosphere.

It is obviously important that we learn more about dust. Interplanetary dust particles are actively collected for research by sending planes into the stratosphere or scouring spacecraft returning to land for impacts of these tiny dust particles. If dust particles make it to the ground by themselves, they can be collected as micrometeorites from places where they are recognisable such as ocean or polar sediments.

However, once an interplanetary dust particle enters the Earth's atmosphere or smashes into a spacecraft, any complex molecules stuck to it are inevitably lost. While we can learn a lot from them about the primordial matter from which our solar system formed as well as the makeup of comets and asteroids, we have to investigate these bodies first-hand to be able to obtain more sensitive information.

A good way to do this is to fly through comet tails. This is what Rosetta did to make the surprise discovery of free oxygen in the coma of comet 67P/Chryumov-Gerasimenko. Meanwhile, NASA's Stardust mission flew through the tail of comet Wild 2 and returned cosmic dust particles to Earth for analysis in 2006. In 2009, NASA announced that fundamental chemical building blocks of life had been found: glycine, an amino acid.

Additional data like this can hopefully help uncover many more secrets of the dust in the universe - including whether it kick-started life on Earth and whether it could do it again.

The ConversationChristian Schroeder, Lecturer in Environmental Science & Planetary Exploration, University of Stirling

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
Big Mess in Italy
Are You Feeling the Economic Surge?
News Blog
Irish Births And Baptisms Visualised
What Happens In The Smartphone Afterlife
Water Intoxication: Are We Drowning In Advice To Drink More Fluids?
The Worldwide Virtual Reality Market Is Set To Be Huge
Average Gasoline Prices for Week Ending 05 December 2016 Rose Over 5 Cents
What We Read Today 05 December 2016
Why We Have Different Blood Types
November 2016 Conference Board Employment Index Improved.
November 2016 ISM and Markit Services Index Mixed
Are All Collateralized Loan Obligations Equal?
A Third Of Homes Sold For The List Price Or More In August 2016
It Is Still Not Too Late To Find A Seasonal Job
Infographic Of The Day: Are You A Good Listener
Investing Blog
Momentum Issues A Warning
The Great Bond Crash Of 2016: 05 December Update
Opinion Blog
The Shale-War Is Over
Fake Science
Precious Metals Blog
Silver Prices Rebounded Today: Where They Are Headed
Live Markets
05Dec2016 Market Close: US Markets Close Higher, WTI Crude Settles At $51.09, US Dollar Drops Below 100 Temporally
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government



Crowdfunding ....






























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved