FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.

posted on 11 October 2015

How We Discovered That The Earth's Inner Core Is Older Than Previously Thought

from The Conversation

-- this post authored by Andrew John Biggin, University of Liverpool

According to recent estimates, the Earth's solid inner core started forming between half a billion and one billion years ago. However, our new measurements of ancient rocks as they cool from magma have indicated that it may actually have started forming more than half a billion years earlier.

While this is still relatively late in the Earth's four-and-a-half billion year history, the implication is that the Earth's deep interior may not have been as hot in the deep past as some have argued. That means the core is transferring heat to the surface more slowly than previously thought, and is less likely to play a big role in shaping the Earth's surface through tectonic movements and volcanoes.

Just after the Earth formed from collisions in a huge cloud of material that also formed the Sun, it was molten. This was because of the heat generated by the formation process and the fact that it constantly collided with other bodies. But after a while, as the bombardment slowed, the outer layer cooled to form a solid crust.

The Earth's inner core is, today, a Pluto-sized ball of solid iron at the centre of our planet surrounded by an outer core of molten iron alloyed to some, as yet unknown, lighter element. Despite the Earth being hottest at its centre (about 6,000°C), liquid iron freezes into a solid because of the very high pressures there. As the Earth continues to cool down, the inner core grows at a rate of about 1mm per year by this freezing process.

Knowing the point in time at which the Earth's centre cooled down sufficiently to first freeze iron gives us a fundamental reference point for the entire thermal history of the planet.

The magnetic field of the Earth is generated by the movement of electrically conducting molten iron in the outer core. This movement is generated by light elements released at the inner core boundary as it grows. Therefore, the time when iron was first frozen also represents a point in time when the outer core received a strong additional source of power.

The Earth's magnetic field. NASA/Flicr, CC BY-SA

It is the signature of this boost of the magnetic field - the largest long-term increase in its entire history - that we think we have observed in the magnetic records recovered from igneous rocks formed at this time. Magnetic particles in these rocks "lock-in" the properties of the Earth's magnetic field at the time and place that they cool down from magma.

The signal can then be recovered in the laboratory by measuring how the magnetisation of the rock changes as it progressively heated up in a controlled magnetic field. Hunting for this signature is not a new idea but has only just become viable - a combination of having increased amounts of measurement data available and new approaches to analysing them.

The Earth has maintained a magnetic field for most of its history through a "dynamo" process. This is similar in principle to a wind-up radio or a bicycle-powered light bulb in that mechanical energy is converted to electromagnetic energy. Before the inner core first started to solidify, this "geodynamo" is thought to have been powered by another entirely different and inefficient "thermal convection" process.

Once iron started to freeze out of the liquid at the base of the core, the remainder became less dense, providing an additional source of buoyancy and leading to much more efficient "compositional convection". Our results suggest that this efficiency saving happened earlier in the Earth's history than previously thought, meaning that the magnetic field would have been sustained for longer with less energy overall. Since the energy is mostly thermal, this implies that the core as a whole is likely cooler than it would have been if the inner part formed later.

Heat and plate tectonics

A cooler core implies lower heat flow across the core-mantle boundary. This is important for all of Earth sciences because it could be one of the drivers for making tectonic plates move and is also a source of plume volcanism at the Earth's surface. We know that these processes are a result of mantle convection produced, ultimately, by the flow of heat out of the planet at a rate that we can measure rather precisely. What we still do not know is how much of this heat lost at the Earth's surface is from the mantle and how much is from the core.

Mantle convection - the process that drives plate tectonics. Surachit/wikimedia, CC BY-SA

Heating from the core is thought to produce plumes welling up from just above the core-mantle boundary, which might help drive the flow within the mantle. The suggestion from our findings is that the core contribution to the surface heat flow is lower than implied from other studies and that subduction in the ocean, when one tectonic plate goes under another down into the mantle, are much more important in driving mantle convention than the heat rising from the core.

The debate about the age of the inner core and the resulting thermal evolution of the Earth is not yet over. More palaeomagnetic data are needed to confirm that the sharp increase in magnetic field strength that we have observed is really the largest in the planet's history. Furthermore, modelling needs to verify whether some other event could have created the magnetic strengthening at this time.

Nevertheless, as things stand, theory and observation combine to indicate that the Earth was two-thirds of its present age before it started growing an inner core - meaning earth scientists may have to revise their understanding of the planet's history.

The ConversationAndrew John Biggin, Lecturer in Geophysics, University of Liverpool

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing

Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.

You can also comment using Facebook directly using he comment block below.

Econintersect Contributors


Print this page or create a PDF file of this page
Print Friendly and PDF

The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.

Take a look at what is going on inside of
Main Home
Analysis Blog
Rising Tide Does Not Lift All Ships
Comments on Feyerabend’s ‘Against Method’, Part II
News Blog
Docking A Huge Cruise Ship Is More Complicated Than You Think
New Seasonal Outlook Updates from NOAA and JAMSTEC - Let's Compare Them.
Infographic Of The Day: Driving Into A Battery Powered Future
Earthquake Risk - Location Matters
Investor Alert: Be On The Lookout For Investment Scams Related To Hurricane Matthew
Lost In Translation: Five Common English Phrases You May Be Using Incorrectly
The Size And Scope Of Samsung's Business
Immigration Is The Top Worry For Britons
People Killed By Russian Airstrikes In Syria
Have You Taken These 4 Simple Steps To Improve Your Trading?
14 October 2016: ECRI's WLI Growth Index Insignificantly Declines
Mom Breaks Down In Tears When Son With Autism Meets Service Dog
Rail Week Ending 15 October 2016 Paints A Negative Economic View
Investing Blog
FinTech Is Taking A Bite Out Of Banks
Options Early Assignment - Should You Worry?
Opinion Blog
US 2016 Election: Will US-China Relations Change
Prop. 51 Versus A State-Owned Bank: How California Can Save $10 Billion On A $9 Billion Loan
Precious Metals Blog
How Will The Election Outcome Impact Precious Metals?
Live Markets
21Oct2016 Market Close: Major US Indexes Close Flat On Low Volume, Crude Prices Resume Climb, US Dollar Stabilizes In Mid 98 Handle, Yes, Most Investors Are Worried Which Way This Market Will Go
Amazon Books & More

.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Middle East / Africa
USA Government

Crowdfunding ....



Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day


Asia / Pacific
Middle East / Africa
USA Government

RSS Feeds / Social Media

Combined Econintersect Feed

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution



  Top Economics Site Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved