econintersect.com
       
  

FREE NEWSLETTER: Econintersect sends a nightly newsletter highlighting news events of the day, and providing a summary of new articles posted on the website. Econintersect will not sell or pass your email address to others per our privacy policy. You can cancel this subscription at any time by selecting the unsubscribing link in the footer of each email.



posted on 30 September 2015

Where Are The Missing Gravitational Waves?

from The Conversation

-- this post authored by Paul Lasky, Monash University and Ryan Shannon, CSIRO

Neutron stars - the dead stellar remnants of old, burned-out stars - are some of the most extreme objects in the universe. They weigh as much as the entire Sun, but are small enough to fit into Sydney's CBD, and they rotate up to 700 times every second. Imagine that: a whole star rotating faster than the fastest kitchen blender.

Astronomers know of a few thousand neutron stars, but one in particular is a stand-out. As part of the Parkes Pulsar Timing Array, we have been observing pulsar J1909-3744 with the CSIRO's Parkes Radio Telescope for 11 years.

During this time, we have accounted for every single one of the neutron star's 116 billion rotations (115,836,854,515, to be precise). We know the rotational period of this star to 15 decimal places, making it truly one of the most accurate clocks in the universe.

But, as we show in a paper published today in the journal Science, it was not supposed to be this way. Gravitational waves from all of the black holes in the universe were supposed to ruin the timing precision of this pulsar. But they have not.

We used the Parkes Telescope to closely monitor a pulsar for signs of passing gravitational waves. CSIRO, Author provided

Colossal collisions

Gravitational waves stretch and squeeze space, causing the distance between us and the neutron star to change. The gravitational waves we were looking for should have altered that distance by about ten metres, a tiny fraction given that this neutron star is about 3.6 x 1019 metres from Earth (that's 3.6 with 19 zeros following)! But this should have been enough to show up in our measurements.

Yet the fact that our measurements are so accurate tells us that something is wrong with the theory. This doesn't mean that gravitational waves don't exist. There are other facets of our understanding of the universe that might be off track.

Whatever the resolution to this quandary, it is sure to change the way we understand the most massive black holes in the universe.

The centre of our galaxy harbours a black hole that weighs more than four million times the mass of our sun. But this is a lightweight; other galaxies contain black holes weighing more than 17 billion times the mass of our Sun.

And we have good reason to believe that most, if not all, galaxies contain supermassive black holes in their cores. We also know that galaxies throughout the universe grow by merging with one another.

Following the merger of any two galaxies, the two black holes from the parent galaxies sink to the centre of the daughter galaxy, forming a supermassive black hole binary pair. At some point, the subsequent evolution of the binary pair becomes dominated by the emission of gravitational waves.

Merging galaxies caught in the act by the Hubble Space Telescope. Wikimedia

Ripples in spacetime

Gravitational waves are tiny ripples in the fabric of spacetime, and are a direct consequence of Albert Einstein's theory of general relativity. We celebrate its 100th birthday in November this year.

When any two black holes are spiralling around one another, they ought to emit gravitational waves. These carry energy away from the system, causing the two black holes to move closer together.

The sum of all the binary supermassive black holes in the universe should produce a background of gravitational waves (similar to the cosmic microwave background). It is this background that was expected to ruin our precision timing of PSR J1909-3744.

Astrophysicists have made a number of predictions about the strength of the background. These predictions incorporate state-of-the-art measurements of galaxy formation and evolution, and the most sophisticated theoretical models of how the universe evolves following the Big Bang.

Why no gravitational waves?

But we want to be very clear that our lack of a detection does not imply that Einstein's theory of relativity is wrong, nor does it imply that gravitational waves don't exist. While we don't know the real solution, we have a number of ideas.

Perhaps not every galaxy in the universe contains a supermassive black hole. Reducing the fraction of galaxies that host supermassive black holes in the models reduces the predicted amplitude of the gravitational wave background, potentially making it undetectable by our observations.

Perhaps we do not understand the relationship between the mass of the host galaxy and the mass of the black hole. We use empirical relationships between galaxy and black hole masses to determine the latter. While we believe these are robust in the local universe, the black hole mergers we are most sensitive to occur billions of light years from us, where our understanding of these empirical relations is far from complete.

Perhaps one of our assumptions about the process that drives the mergers is too simplistic. For example, if the centres of galaxies contain significant amounts of gas, it can act like an extra friction force, causing black holes to merge with one another quicker than expected. This would also cause a smaller-than-expected amplitude of the gravitational wave background.

At the moment, each of these scenarios is equally plausible. Continued observations of pulsars, as well as observations of the distant universe with large optical telescopes, may soon allow us to distinguish between these ideas. And, one day, we may finally find the direct evidence for the existence of gravitational waves that we're looking for.

The ConversationPaul Lasky, Postdoctoral Fellow in Gravitational Wave Astrophysics, Monash University and Ryan Shannon, Research Fellow, International Centre for Radio Astronomy Research, Curtin University, CSIRO

This article was originally published on The Conversation. Read the original article.

>>>>> Scroll down to view and make comments <<<<<<

Click here for Historical News Post Listing










Make a Comment

Econintersect wants your comments, data and opinion on the articles posted.  As the internet is a "war zone" of trolls, hackers and spammers - Econintersect must balance its defences against ease of commenting.  We have joined with Livefyre to manage our comment streams.

To comment, using Livefyre just click the "Sign In" button at the top-left corner of the comment box below. You can create a commenting account using your favorite social network such as Twitter, Facebook, Google+, LinkedIn or Open ID - or open a Livefyre account using your email address.



You can also comment using Facebook directly using he comment block below.





Econintersect Contributors


search_box

Print this page or create a PDF file of this page
Print Friendly and PDF


The growing use of ad blocking software is creating a shortfall in covering our fixed expenses. Please consider a donation to Econintersect to allow continuing output of quality and balanced financial and economic news and analysis.


Take a look at what is going on inside of Econintersect.com
Main Home
Analysis Blog
The Problem With Obamacare Is That It Did Little To Reduce Overall Healthcare Spending
Joan Robinson’s Critique of Marginal Utility Theory
News Blog
Early Headlines: New Oil Pact, Facebook Should Crush Fake News, Trump Vs CIA, Dow 20,000?, Twin Bombings In Turkey, India Currrency SNAFU, New Charges In So. Korea, US-China Trade War? And More
Free Autographed Copies Of Frank Li's New Book Available - If You Act Fast
Most Women Inventors Come From America
Earnings And Economic Reports: Week Starting 12 December 2016
The U.S. Is Home To The Most Unicorns
Why Britain's Public Finances Will Suffer If Brexit Reduces Migration
Working From Home Is Still Rare In The United States
What We Read Today 10 December 2016
The Last Bucket Catch
Joe Sixpack's Situation in 3Q2016: The Average Joe Is Better Off
Why Are Some People More Delinquent On Loans Than Others? - Part 1
Gravity Returns To San Francisco Housing Market
Violent Bond Selloff: An Eye-Opening Perspective
Investing Blog
The Week Ahead: Dow 20,000 Just Ahead?
Natural Gas Prices Are Headed Higher In 2017
Opinion Blog
Is Commercial Real Estate Facing A Day Of Reckoning?
The US Has A Regime-Uncertainty Problem
Precious Metals Blog
Silver Prices Rebounded Today: Where They Are Headed
Live Markets
09Dec2016 Market Close: Wall Street Closes On A New High, Trump Sugar High, Crude Prices Testing Resistance, US Dollar Melts Higher
Amazon Books & More






.... and keep up with economic news using our dynamic economic newspapers with the largest international coverage on the internet
Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government



Crowdfunding ....






























 navigate econintersect.com

Blogs

Analysis Blog
News Blog
Investing Blog
Opinion Blog
Precious Metals Blog
Markets Blog
Video of the Day
Weather

Newspapers

Asia / Pacific
Europe
Middle East / Africa
Americas
USA Government
     

RSS Feeds / Social Media

Combined Econintersect Feed
Google+
Facebook
Twitter
Digg

Free Newsletter

Marketplace - Books & More

Economic Forecast

Content Contribution

Contact

About

  Top Economics Site

Investing.com Contributor TalkMarkets Contributor Finance Blogs Free PageRank Checker Active Search Results Google+

This Web Page by Steven Hansen ---- Copyright 2010 - 2016 Econintersect LLC - all rights reserved